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Abstract. Homology has long been accepted as an important computable
tool for quantifying complex structures. In many applications these structures

arise as nodal domains of real-valued functions and are therefore amenable

only to a numerical study, based on suitable discretizations. Such an approach
immediately raises the question of how accurate the resulting homology com-

putations are. In this paper we present a probabilistic approach to quantifying

the validity of homology computations for nodal domains of random Fourier
series in one and two space dimensions, which furnishes explicit probabilistic a-

priori bounds for the suitability of certain discretization sizes. In addition, we

introduce a numerical method for verifying the homology computation using
interval arithmetic.

1. Introduction

The practical need to extract low-dimensional nonlinear structures from high-
dimensional data sets has led to the introduction of topological methods in statis-
tical analysis, and currently there is a growing body of literature [22, 25, 10, 9, 6]
that addresses the following problem: provide efficient algorithms for estimating
topological properties of an unknown manifold X given a point-cloud data set that
lies on or near X. It should be mentioned that for some of the proposed applications
it is reasonable to assume that the point-cloud data set is obtained via a random
sampling process.

To a large extent the emphasis of the above-mentioned papers is on the method
of estimation. From now on we restrict our attention to homology where to the
best of our knowledge the first result concerning the accuracy of such estimation
is due to Niyogi, Smale, and Weinberger [21]. In this paper, the authors propose a
stochastic algorithm for computing the homology of a given manifold X ⊂ Rd by
randomly sampling M points from the manifold, and derive explicit bounds on the
probability that their algorithm computes the correct homology. The probability
bound depends on the number M and a condition number 1/τ . The latter param-
eter encodes both local curvature information of the manifold X, as well as global
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separation properties. More precisely, the inverse condition number τ is the largest
number such that the open normal bundle about X ⊂ Rd of radius r is embedded
in Rd for all r < τ .

Consider now the problem of an evolutionary system which produces complicated
spatial patterns, such as for example phase separation in materials, turbulent fluid
flow, predator-prey populations in spatially explicit systems, etc. Again, these
are typically high-dimensional systems for which there is considerable interest in
understanding the temporal changes of the low-dimensional nodal domains, i.e.,
patterns, and homological methods appear to provide new techniques through which
one can explore these problems [13, 14, 18]. Notice, however, that in this setting
the topology of the level sets which define the nodal domains changes as a function
of time, and thus, there is no fixed manifold X for which one is trying to compute
the homology. Furthermore, as the topology changes the condition number 1/τ
becomes unbounded.

While the topological complexity of tracking patterns appears to be greater, the
sampling issues can be assumed to be simpler. These patterns are typically obtained
either experimentally using various imaging techniques, for example from a digital
camera, or numerically by solving a deterministic or stochastic partial differential
equations based on some discretization of the underlying evolution equation. This
motivates the following assumption on the approximation of the nodal domains (see
Figure 1).

Definition 1.1 (Cubical Approximation of a Nodal Domain). Let M be an ar-
bitrary positive integer and let [a, b] denote a compact interval in R. Define the
equidistant M -discretization of [a, b] as the collection of the grid points

xk = a +
b− a

M
, for k = 0, . . . ,M .

Let u : G → R be a function defined on a compact rectangular domain G ⊂ Rd.
The cubical approximations Q±M of the nodal domains

N± = {x ∈ G : ±u(t, x) ≥ 0}
are defined as the sets

Q±M =
⋃{

d∏
`=1

[k`, k` + 1] : ±u(x1,k1 , . . . , xd,kd
) ≥ 0 , k ∈ {0, . . . ,M}d

}
,

where k = (k1, . . . , kd), and xj,0, . . . , xj,M denotes the equidistant M -discretization
of the j-th component interval of G.

While [21] marks a significant first step towards quantifying the validity of ho-
mology computations, their framework was not designed to deal with the situation
described above. For example, it seems difficult to obtain sharp estimates on the
condition number τ of nodal domains of a smooth function u, which depends only
on easily computable properties of u. In addition, we are assuming a fixed sample
size, namely (M + 1)d. Since 1/τ becomes unbounded, there are positive intervals
of time during which the results of [21] provide no useful information.

Ideally, given a dynamical system and a fixed cubical approximation of the nodal
domain we would like to be able to estimate the amount of time for which the
homology computations of the nodal domains are correct. For now, we pose the
following simpler goal. Consider a random field over the probability space (Ω,F , P)
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Figure 1. Nodal domains of a random trigonometric polynomial
in two space dimensions and their cubical approximations with
M = 50.

and the compact rectangular domain G ⊂ Rd. Let M be an arbitrary positive
integer. Approximate the random nodal domains N±(ω) of the realization u(·, ω) :
G → R by cubical sets Q±M (ω) as in Definition 1.1. We are interested in the
following problem:

(P) Find sharp lower bounds on the probability

P
{
ω ∈ Ω : H∗

(
N±(ω)

) ∼= H∗
(
Q±M (ω)

)}
as a function of M .

As is made clear in this announcement, we approach this problem from two distinct
points of view. The first, which is discussed in Section 2, is to obtain probabilistic
lower bounds. Since it is not a priori clear that these bounds are sharp, in Sec-
tion 3 we describe a numerical procedure to rigorously determine when for a given
sufficiently smooth u : G → R we have H∗ (N±) ∼= H∗

(
Q±M

)
.

We conclude this paper in Section 4 by applying the probabilistic and numerical
techniques to two problems. The first is to determine the number of subdivisions,
M , needed in order to guarantee with high probability that the homology of the
nodal domain of a random trigonometric polynomial is computed correctly using
a cubical approximation. The second is to study the patterns produced by the
stochastic Cahn-Hilliard model for phase separation in binary alloys.

2. Probabilistic Estimates

Random fields and in particular random Fourier series have been studied exten-
sively during the last few decades. See for example [1, 2, 12, 16, 19], as well as the
references therein. With this in mind, we present an abstract probability estimate
for general random fields. Then using this abstract result we consider, separately,
the case of random Fourier series for one and two space dimensions.
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2.1. An Abstract Result. We begin by presenting an abstract probability esti-
mate for the correctness of homology computations in the one-dimensional case.
Consider a probability space (Ω,F , P), and let G = [a, b] ⊂ R denote a compact
interval. Moreover, let u : G × Ω → R denote a random field over (Ω,F , P) such
that for P-almost all ω ∈ Ω the function u(·, ω) : G → R is continuous. In addition,
assume that the following hold:

(A1) For every x ∈ G we have P{u(x) = 0} = 0.
(A2) The random field is such that P{u has a double zero in G} = 0.
(A3) For x ∈ G and δ > 0 with x + δ ∈ G and

pσ(x, δ) = P
{

σ · u(x) ≥ 0 , σ · u
(

x +
δ

2

)
≤ 0 , σ · u(x + δ) ≥ 0

}
there exists a constant C0 > 0 such that

pσ(x, δ) ≤ C0 · δ3 for all σ ∈ {±1} and x ∈ G with x + δ ∈ G .

Of the above assumptions, the first two are usually satisfied for reasonable random
fields. Assumption (A3), however, lies at the heart of our result, and establishing
its validity generally requires some work. In particular, determining or estimating
the constant C0 has to be done with significant care, since it has direct implications
for the tightness of the resulting bounds.

Under the above assumptions, we can now formulate the following result for the
one-dimensional setting.

Theorem 2.1. [20, Theorem 1.3] Consider a probability space (Ω,F , P), and let
G = [a, b] ⊂ R denote a compact interval. Moreover, let u : G × Ω → R denote
a random field over (Ω,F , P) which satisfies all of the above assumptions. For
each ω ∈ Ω, denote the nodal domains of u(·, ω) by N±(ω) ⊂ G, and denote their
cubical approximations as in Definition 1.1 by Q±M (ω). Then for every discretization
size M , the probability that the homologies of N±(ω) and Q±M (ω) coincide satisfies

P
{
H∗(N±) ∼= H∗(Q±M )

}
≥ 1− 8C0(b− a)3

3M2
,

where C0 is the constant introduced in (A3).

The above result isolates the crucial conditions which are necessary for obtaining
probabilistic estimates for homology validation in one space dimension. In principle,
this result can be applied to any choice of random fields, as long as (A1), (A2),
and (A3) can be verified. The third assumption is incorporated into the proof via
dyadic subdivisions. Given the interval G = [a, b] the dyadic points are

dn,k := a + (b− a) · k · 2−n for all k = 0, . . . , 2n − 1 and n ∈ N0 .

Observe that (A3) is related to the asymptotic probability of sign changes at three
consecutive dyadic points which in turn is related to the choice of M , the number
of subdivisions.

An analogous abstract result for the two-dimensional case can be obtained as
well, which also requires (A1) and (A2). However, the assumption corresponding to
(A3) is presented in terms of the asymptotic probabilities of various sign configura-
tions on subsets of the nine dyadic points associated with a square with edge length
size 21−n. Thus, we refer the reader to [20, Theorem 3.8] for a precise formulation.
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Because of the applications we have in mind, we are interested in applying these
results to explicit classes of random functions. Consider a series of the form

(2.1) u(x, ω) =
∞∑

k=0

αk · gk(ω) · ϕk(x) , u : G× Ω → R ,

where G ⊂ Rd denotes a compact rectangular set, and ϕk, k ∈ N0, denotes a
sequence of basis functions which are specified below. Assume that the gk are
independent, identically distributed real-valued random variables over a common
probability space (Ω,F , P). The coefficients αk denote deterministic real numbers.

2.2. The One-Dimensional Periodic Case. Random functions of the form (2.1)
arise naturally in the context of partial differential equations. In this case, many of
the characteristics of the underlying evolution equation are reflected in the choice
of the basis functions ϕk, k ∈ N0. Though in principle Theorem 2.1 applies rather
broadly, for the sake of simplicity we restrict ourselves to evolution equations subject
to periodic boundary conditions. This leads to the following set of assumptions.

(B1) Consider the interval G = [0, 1], and assume that the basis functions in (2.1)
are defined by

ϕ2k(x) = cos(2πkx) and ϕ2k−1(x) = sin(2πkx)

for arbitrary k ∈ N and x ∈ G with ϕ0(x) = 1 for x ∈ G.
(B2) The random variables gk in (2.1) are defined over a common probability

space (Ω,F , P), and they are independent and normally distributed with
mean 0 and variance 1.

(B3) The constants αk in (2.1) are given by α0 = a0 and

α2k = α2k−1 = ak for k ∈ N .

At least two of the constants ak, k ∈ N0, are nonzero, and we have
∞∑

k=0

k6a2
k < ∞ .

Observe that under the above assumptions, the constants ak are directly related
to smoothness properties of the random function u. More precisely, one can show
that if

∞∑
k=0

k2pa2
k < ∞ for some p > 0 ,

then P-almost all realizations u(·, ω) are contained in the Hölder space Cq[0, 1], for
any real 0 < q < p. See for example [16, Section 7.4]. Furthermore, one can easily
show that the spatial covariance function of u is given by

R(x, y) = r(x− y) =
∞∑

k=0

a2
k · cos(2πk(x− y)) .

In other words, under the above assumptions the random function defined in (2.1)
is a homogeneous random field in the sense of [1]. This simplifies some of the
considerations.

Turning to the problem of determining the homology of the nodal domains of u
using a spatial discretization of size M we have the following result.
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Theorem 2.2. [20, Theorem 2.7] Consider the random Fourier series u defined
in (2.1), and assume that (B1), (B2), and (B3) are satisfied. Let M denote an
arbitrary positive integer, and let Q±M (ω) denote the cubical approximations of the
random nodal domains N±(ω) of u(·, ω) as in Definition 1.1.

Then the probability that the homology of the random nodal domains N±(ω) is
computed correctly with the discretization of size M satisfies

P
{
H∗(N±) ∼= H∗(Q±M )

}
≥ 1− π2

6M2
· A0A2 −A2

1

A
3/2
0 A

1/2
1

+ O

(
1

M3

)
,

where

Ap =
∞∑

k=0

k2pa2
k =

1
(2π)2p

· E ‖Dp
xu‖2L2(0,1) ,

and E denotes the expected value of a random variable over (Ω,F , P).

Very much in the spirit of [21], our result furnishes an explicit bound on the likeli-
hood of computing the correct homology. The bound depends on the discretization
size M and global properties of the underlying function u. Unlike [21], however, the
necessary information on u can easily be computed. In fact, it is given explicitly
in terms of the coefficient sequence (ak), which in turn is related to smoothness
properties of u. Observe, that the probability estimate involves the A2 term and
hence it is necessary that u ∈ C2. In light of the importance played by the con-
dition number 1/τ in [21] and its relationship to the curvature of the manifold, it
is reasonable to expect that this is a minimal requirement for the computability of
homology.

The details of the proof of Theorem 2.2 can be found in [20]. However, we
remark that it involves extending results of Dunnage [11] on the zeros of random
trigonometric polynomials.

2.3. The Two-Dimensional Periodic Case. Consider random Fourier series
on G = [0, 1]2 of the form

u(x, ω) =
∞∑

k,`=0

ak,` · (gk,`,1(ω) cos(2πkx1) cos(2π`x2)

+ gk,`,2(ω) cos(2πkx1) sin(2π`x2)
+ gk,`,3(ω) sin(2πkx1) cos(2π`x2)(2.2)
+ gk,`,4(ω) sin(2πkx1) sin(2π`x2))

under the following assumptions.

(C1) The random variables gk,`,m in (2.2) are defined over a common probability
space (Ω,F , P), and they are independent and normally distributed with
mean 0 and variance 1.

(C2) There are positive integers k1, `1 ∈ N and nonnegative integers k2, `2 ∈ N0

with k1 6= k2 and `1 6= `2, as well as k2
1 + `21 6= k2

2 + `22, such that both ak1,`1

and ak2,`2 are nonzero, and in addition
∞∑

k,`=0

(
k6 + `6

)
a2

k,` < ∞ .
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As before, the summability condition in (C2) is related to smoothness properties of
the random field u. In fact, assumption (C2) guarantees that the function u(·, ω)
has continuous partial derivatives up to order two, for P-almost all ω ∈ Ω. In this
setting, we obtain the following result.

Theorem 2.3. [20, Theorem 3.10] Consider the random Fourier series u defined
in (2.2), and assume that both (C1) and (C2) are satisfied. Let M denote an
arbitrary positive integer, and let Q±M (ω) denote the cubical approximations of the
random nodal domains N±(ω) of u(·, ω) as in Definition 1.1.

Then the probability that the homology of the random nodal domains N±(ω) is
computed correctly with the discretization of size M satisfies

P
{
H∗(N±) ∼= H∗(Q±M )

}
≥ 1− 1067π2

18M2
· (A2,0 + A1,1 + A0,2)

2

A
1/2
0,0 A

1/2
0,1 A

1/2
1,0 A

1/2
1,1

+ O

(
1

M3

)
,

where

Ap,q =
∞∑

k,`=0

k2p`2qa2
k,` =

1
(2π)2p+2q

· E
∥∥Dp

x1
Dq

x2
u
∥∥2

L2(G)
.

Establishing this result is considerably more involved than the one-dimensional
case, details can be found in [20].

3. Numerical Homology Verification

The results of the previous section focus on the probability of correctly comput-
ing the homology of the nodal domain of a random function given a fixed level of
discretization. The complementary question is: given a fixed function can one cor-
rectly compute the homology of the nodal domains? In particular, our motivation
to address this issue stems in part from a need to understand the optimality of the
probabilistic bounds given in Theorems 2.2 and 2.3. This led to the development of
numerical techniques which rely on having explicit formulas (or at least appropriate
bounds) for the function and its first and second derivatives, and when successful
(we return to this point at the end of the section), produce the right homology
information.

To control the computational cost, the basic approach is to adaptively divide
the domain into boxes on which we verify that the sign structure on the vertices
captures the topology of the nodal domain inside of the box. More explicitly, we use
u, its derivatives, and interval arithmetic to prove that the double zero condition
considered in the probabilistic study does not occur along appropriate rays in each
box. Boxes in a grid are tested and are subdivided if the test does not rule out the
possibility of a double zero along appropriate rays. The result is a non-uniform grid
containing smaller boxes as required to resolve the nodal domain (see Figure 2).

We now describe the procedure for a two-dimensional, positive nodal domain
N+, and an analogous approach works for the negative nodal domain N− and the
simpler setting of one-dimensional nodal domains. The first step is to subdivide
the domain evenly in each coordinate direction to obtain a uniform grid. We next
compute the sign of u on each of the vertices of the grid. It is important to note that
all numerical computations will be performed using interval arithmetic to account
for round-off errors. If the sign of u cannot be rigorously determined at a vertex,
then to proceed further requires a modification of the grid.
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Figure 2. Nodal domains of a bivariate random trigonometric
polynomial with N = 7 and boxes on which the topology can be
determined from the corner function values.
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Figure 3. Possible sign structure up to rotation and sign inversion
on the vertices of a grid element B.

For each possible vertex sign configuration on a grid element B, we now define a
verification step whereby we try to determine the topological structure of N+ ∩B.
The verification step will depend on the sign configuration on the vertices of B
which falls into one of the four categories shown up to rotation and sign inversion
in Figure 3. If the verification step on B fails, we subdivide B in each coordinate
direction and perform the verification step on each of the smaller boxes contained in
B. This procedure continues until all boxes in the grid have passed the verification
step, or until the grid is refined beyond a preset resolution.

Case (a): In this case, we check that u(x) > 0 for all x ∈ B. In other words,
N+ ∩ B = B. This check is implemented by using interval arithmetic to evaluate
an outer approximation ũ(B) of u(B). In practice we compute

ũ(B) := u(c) + Du(B) · (B − c)t

where c = (cx, cy) is the center point of B = (Bx, By), with Bx and By the intervals
of B in the x and y directions respectively, Du(B) = (∂xu(Bx, By), ∂yu(Bx, By)),
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and all computations are performed using interval arithmetic to also bound round-
off error. If all points in this outer approximation are strictly positive, then we have
verified that u(x) > 0 for all x ∈ B.

Cases (b),(c): To rule out the possibility of a double zero occurring along vertical
segments in Case (c) and horizontal and vertical segments in Case (b), we try to
show that u is monotone in appropriate directions. For case (c), we use interval
arithmetic to verify that u > 0 on the bottom edge of B, u < 0 on the top edge
of B, and 0 6∈ uy(B) so that u is monotone in the vertical direction. For Case (b),
we analogously show that u is monotone in both the vertical and the horizontal
direction.

Case (d): The sign structure on the vertices in this case indicates that more reso-
lution is required to approximate N+ ∩B. We consider a box of this sign structure
to automatically fail the verification step and, therefore, it will be subdivided.

If this subdivision and verification procedure terminates successfully, meaning
that we obtain a grid where each grid element passes the corresponding verification
test, then we have obtained a resolution sufficient for approximating N+. We define
the cubical representation N+ for the nodal domain N+ on a uniform grid whose
diameter matches the smallest elements in the adaptive grid used for verification.
This grid is also augmented with an extra set of boxes on the left side and bottom
of the domain to account for a shift in the cubical representation introduced by
the following choice. For the cubical representation, we make the choice that the
grid element B is in N+ if and only if the vertex sign on the upper right hand
corner of B, as determined by outer approximation based on interval arithmetic, is
positive. The homology of the cubical set N+ may now be computed using existing
software [15, 17].

The proof of the following theorem is presented in [8].

Theorem 3.1. Let N+ be the cubical representation of N+ produced by the adaptive
verification technique described above. Then H∗(N+) = H∗(N+).

It can be shown, [20, Theorem 1.2], that if the random field u : G×Ω → R over
the probability space (Ω,F , P) is P-almost surely twice differentiable and satisfies
assumptions (A1) and (A2), then with probability 1 the homology of a nodal do-
main can be computed given a sufficiently fine grid. In practice, however, failure
can occur. For example, the boxes in the adaptive grid may reach a preset minimal
size so that the algorithm is terminated before the result is obtained. The adap-
tive verification technique outlined above is used in [8] to study the probabilistic
estimates in Theorem 2.3 in greater depth.

4. Specific Applications

In this section, we use the probabilistic and numerical techniques described above
to study the homology of nodal sets in two specific contexts, random trigonometric
polynomials and the linearized stochastic Cahn-Hilliard model.

4.1. Random Trigonometric Polynomials. Observe that Theorem 2.2 applies
to random trigonometric polynomials

(4.1) u(x, ω) =
N∑

k=1

(g2k(ω) · cos(2kπx) + g2k−1(ω) · sin(2kπx))
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if the coefficients in (B3) are chosen to be ak = 1 for 1 ≤ k ≤ N , a0 = 0, and
ak = 0 for k > N , where N ≥ 3. In particular,

A0A2 −A2
1

A
3/2
0 A

1/2
1

=
√

6
180

(N − 1)(8N + 11)
√

(N + 1)(2N + 1) ∼ 4
√

3
45

·N3

which suggests that, in order for the homology computation to be accurate with
high confidence, we have to choose the discretization size M in such a way that

(4.2) M ∼ N3/2 for N →∞ .

A cautionary remark is that because of the relationship between cubical approxi-
mations and assumption (A3), a priori Theorem 2.2 only provides an asymptotic
bound. With this in mind we turn to the question of measuring the validity of the
result for “small” values of N and determining how sharp the result is.

The asymptotic behavior of the number of zeros of random trigonometric poly-
nomials has been studied extensively. Specifically, one can show that as N → ∞,
most trigonometric polynomials of the form (4.1) have on the order of 2N/31/2 real
zeros in the interval [0, 1]. See for example [2, 12]. Thus, in order for our homology
computation to be correct, we need to at least make sure that the discretization
size M satisfies 1/M = O(1/N). Due to the almost certain occurrence of zeros
which are more closely spaced, it seems implausible that this constraint would be
optimal.

To obtain better bounds we turn to the numerical techniques described in Sec-
tion 3. Figure 4 contains the results for various values of N between 5 and 1000 of
the computations of four different quantities:

(1) the expected number of zeros (red, lower-most curve),
(2) the inverse of the expected minimal distance between two consecutive zeros

of the random polynomial (blue curve, second from below),
(3) the prediction of Theorem 2.2 which would ensure a correctness probability

of at least 95% is given by the magenta curve (second from the top), i.e.,

M2 =
8π2

9
√

3
·N3 ,

(4) the integer M for which 95% of the generated random polynomials have
a minimal distance between consecutive zeros which is larger that 1/M
(green, upper-most curve).

The fact that the curve (3) lies exactly between the curves (2) and (4) and shows the
same asymptotic growth, leads us to conjecture that (4.2) provides an appropriate
ratio between the number of modes and the discretization size.

The same analysis can be applied to the two-dimensional case. Again, let N ≥ 3.
If the coefficients of (2.2) are chosen to be ak,` = 1 for 1 ≤ k, ` ≤ N , and ak,` = 0
otherwise, then u is a bivariate random trigonometric polynomial and

(A2,0 + A1,1 + A0,2)
2

A
1/2
0,0 A

1/2
0,1 A

1/2
1,0 A

1/2
1,1

=
1

900
·
(
46N2 + 51N − 7

)2 ∼ 529
225

·N4 .

This implies that in order for the homology computation to be accurate with high
confidence, we have to choose the discretization size M in such a way that

M ∼ N2 for N →∞ ,
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Figure 4. Numerical results for random trigonometric polynomi-
als. Curves (1), (2), (3), (4) from bottom to top, respectively.

in contrast to the one-dimensional case. A numerical study of the accuracy of this
ratio is presented in [8].

4.2. The Stochastic Cahn-Hilliard Model. One of the main motivations for
our results is the study of deterministic or stochastic evolution equations. As an
example, consider the Cahn-Hilliard-Cook model which is given by

(4.3)
∂u

∂t
= −∆

(
ε2∆u + u− u3

)
+ σ · ξ in G ⊂ Rd ,

where G denotes a square domain, ξ is the generalized derivative of a suitable Q-
Wiener process, and ε and σ are small positive parameters. This stochastic partial
differential equation has been proposed as a model for phase separation in metallic
alloys and produces complicated patterns, see for example [3, 4, 5, 7, 26] and the
references therein. As we mentioned in the introduction, computational homology
can be used to quantify these complicated structures [14], and the question of choos-
ing the correct discretization size M for the homology computations is of utmost
importance. Notice that if we are interested in the evolution of (4.3) originating at
a random field, then for any time t > 0 the solution u(t, ·) is a random field over G.
In general, however, the coefficients in the Fourier expansion of this random field
will be neither Gaussian nor independent. An important special case where these
properties are realized is the linearized Cahn-Hilliard model

(4.4)
∂u

∂t
= −∆

(
ε2∆u + u

)
+ σ · ξ in G ⊂ Rd ,

provided the initial condition satisfies the assumptions of our theorems.
For the sake of brevity, we demonstrate the applicability of our results on homol-

ogy validation only for the deterministic special case σ = 0 and the one-dimensional
base domain G = (0, 1) under periodic boundary conditions, the general case can
be found in [8]. Furthermore, suppose that the initial condition u(0, ·) is a random
periodic field as in (4.1) for an appropriate choice of N = Nε. Then for every t > 0
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the solution of (4.4) with σ = 0 is given by

u(t, x, ω) =
Nε∑
k=1

eλkt · (g2k(ω) · cos(2kπx) + g2k−1(ω) · sin(2kπx)) ,

where λk = 4π2k2 · (1 − 4π2k2ε2) denotes the k-th eigenvalue of the linearized
Cahn-Hilliard operator. Choosing Nε = br/(2πε)c, for some fixed r > 1 guarantees
that for every small ε > 0 the initial condition contains all unstable modes, i.e., all
modes which are responsible for the formation of the complicated patterns. Again,
see [8] for details.

The explicit representation of the solution u of (4.4) shows that our results for
random Fourier series are readily applicable. Consider

S`,ε(τ) =
Nε∑
k=1

(2πε)2`+1
k2`e2ε2λkτ ε→0−→

∫ r

0

s2`e2τs2(1−s2) ds ,

then using the notation of Theorem 2.2 we have

A0A2 −A2
1

A
3/2
0 A

1/2
1

=
Iε

(
t/ε2

)
8π3ε3

, where Iε(τ) =
S0,ε(τ)S2,ε(τ)− S1,ε(τ)2

S0,ε(τ)3/2S1,ε(τ)1/2
.

Thus, the probability estimate takes the form

P
{
H∗(N±) = H∗(Q±)

}
≥ 1− 1

48πε3M2
· Iε

(
t/ε2

)
+ O

(
1

M3

)
.

Notice that for every fixed τ > 0 the value Iε(τ) converges as ε → 0. The above esti-
mate implies that in order to compute the homology of the nodal domains correctly
with high probability, we have to choose M ∼ ε−3/2. This is in accordance with
the fact that the observed patterns exhibit a typical thickness which is proportional
to ε as ε → 0.

In order to demonstrate the accuracy of our probabilistic predictions also in the
partial differential equations case, we employ the method of validated computations
from [8]. For ε = 0.005 and three values of M , we computed the actual probability
that the first discretization interval [0, 1/M ] contains more than one zero, i.e., that
one cannot determine the correct topology of the nodal domains from the function
values at 0 and 1/M . According to the above discussion, this probability should
asymptotically be given by Iε(t/ε2)/(48πε3M3) for large values of M , and this is
confirmed in the left graph of Figure 5. In fact, the asymptotic behavior predicted
by Theorem 2.2 is realized almost exactly for the discretization size M = 100,
and at least qualitatively for M = 50. The significantly different behavior of the
curve for M = 25 can be explained as follows. Using the results in [12] one can
easily show that the expected value EZ(t) of the number of zeros Z(t, ω) of the
function u(t, ·, ω) is given by

EZ(t) = 2 ·

(
Nε∑
k=1

k2e2λkt

)1/2

·

(
Nε∑
k=1

e2λkt

)−1/2

.

The graph of EZ(t) is qualitatively similar to the M = 25 curve in Figure 5: After
an initial decrease to a minimal value of 41.18 at t/ε2 ≈ 2.4, the graph increases
again and limits to 44.94 as t →∞. Thus, the probability that the interval [0, 1/M ]
for M = 25 contains more than two zeros is fairly large. In fact, the computations
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Figure 5. Validated numerical results for the probability of a false
homology computation in the linearized Cahn-Hilliard model (left)
and the nonlinear Cahn-Hilliard model (right). From top to bot-
tom the solid lines correspond to M = 25, 50, 100, the dashed line
shows the function Iε(τ) from the probabilistic estimate. All curves
have been scaled by the factor 48πε3M3.

of Figure 5 show that for t/ε2 ≈ 2.4 this probability is 59.6%, while for large t it
stabilizes at 79.0%.

The right graph in Figure 5 contains analogous numerical results for the nonlin-
ear Cahn-Hilliard equation (4.3), again in the deterministic situation with σ = 0.
Notice that now the curve for M = 25 exhibits a marked decay starting at around
t/ε2 ≈ 70, and the remaining curves show similar, although not as pronounced,
behavior. On the other hand, for times t ≤ 70ε2 the curves in both graphs are
indistinguishable, despite the fact that they were obtained from a linear and a non-
linear model, respectively. Recent theoretical work has shown that in fact during
the initial phase separation regime of the Cahn-Hilliard equation the effects of the
nonlinearity are suppressed for an unexpectedly long time [3, 4, 23, 24, 26]. These
results have established rigorous lower bounds on the duration of the linear regime.
In contrast, our results provide an upper bound on the onset of nonlinear behavior
in the Cahn-Hilliard equation, and complement our findings in [14].
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