
Higher-order feedback computation

Juan P. Aguilera1, Robert S. Lubarsky2, and Leonardo
Pacheco3[0000−0002−7703−7990]

1 TU Wien, Austria
aguilera@logic.at

2 Florida Atlantic University, USA
rlubarsk@fau.edu

3 TU Wien, Austria
leonardo.pacheco@tuwien.ac.at

Abstract. Feedback Turing machines are Turing machines which can
query a halting oracle which has information on the convergence or di-
vergence of feedback computations. To avoid a contradiction by diagonal-
ization, feedback Turing machines have two ways of not converging: they
can diverge as standard Turing machines, or they can freeze. A natural
question to ask is: what about feedback Turing machines which can ask
if computations of the same type converge, diverge, or freeze? We de-
fine αth order feedback Turing machines for each computable ordinal α.
We also describe feedback computable and semi-computable sets using
inductive definitions and Gale–Stewart games.

Keywords: Turing computation · Feedback computation · Fixed-point
operators.

1 Introduction

Feedback Turing machines are Turing machines which can query a halting oracle
h :⊆ ω×ω → {↓, ↑}, which has information on the convergence or divergence of
feedback computations. That is, given the code e for a feedback Turing machine
and an input n the oracle answers if the computation {e}h(n) converges or
diverges. To avoid a contradiction by diagonalization, feedback Turing machines
have two ways of not converging: they can diverge as standard Turing machines,
or they can freeze. A feedback Turing machine freezes when it asks the halting
oracle h about a pair ⟨e, n⟩ not in the domain of h.

Feedback Turing machines were first studied by Ackerman, Freer and Lubarsky
[2, 3]. They proved that the feedback computable sets are the ∆1

1 sets and the
feedback semi-computable sets are the Π1

1 sets. We can also show that the feed-
back semi-computable sets are the winning regions of Gale–Stewart games with
Σ0

1 payoff [14]. It is quite curious that some of the key results of [2] were an-
nounced in Rogers’ textbook on recursion theory [15], almost 50 years before
proofs were published.

Lubarsky [11] defined feedback infinite time Turing machines and their sub-
computation trees. He showed that feedback writable, feedback eventually writable,

2 J.P. Aguilera et al.

and feedback accidentally writable reals coincide; this does not happen for stan-
dard infinite time Turing machines. By a result of Welch [16], the feedback in-
finite time Turing machine semi-computable sets are the winning regions of Σ0

3

Gale–Stewart games. On the other hand, one can also add feedback to weaker
notions of computability. Ackerman et al. [2, 3] studied feedback primitive re-
cursion. Feedback primitive recursive sets coincide with the computable sets.
That is, computability via Turing machines itself is a kind of feedback compu-
tation. Ackerman et al. also lifted the results of feedback computability over ω
to feedback computability over 2ω in [1].

A natural question to ask is: what about feedback Turing machines which
can ask if computations of the same type converge, diverge, or freeze? These new
machines are second-order feedback machines. Note that we must now have a
new and stronger notion of freezing to avoid a contradiction by diagonalization.
Having defined second-order feedback computation, it is now natural to ask:
what about third-, fourth-, and higher-order feedback?

We define αth order feedback Turing machines for each computable ordinal α.
We also describe feedback computable and semi-computable sets using inductive
definitions and Gale–Stewart games. Specifically, we prove the following level-
by-level correspondence:

Theorem 1. For all α < ωck
1 , the following classes of sets of integers coincide:

1. the (α+ 1)-feedback semi-computable sets;
2. the Σµ

α+1-definable sets; and
3. the ⅁(Σ0

2)α sets.

Proof. Items 1 and 2 are equivalent by Theorems 2 and 3. Items 2 and 3 are
equivalent by [9, 8].

We now turn our attention to µ-arithmetic. µ-arithmetic is obtained by
adding least and greatest fixed-point operators to first-order arithmetic. It was
inspired by Kozen’s [10] modal µ-calculus, an extension of modal logic by fixed-
point operators. Lubarsky [12] characterized the µ-definable sets using n-reflecting
ordinals. This characterization was later used by Bradfield [7] to show the strict-
ness of the modal µ-calculus’ alternation hierarchy, a problem which stayed open
for almost a decade. We should note that we are restricted to taking fixed points
of positive formulas in the µ-arithmetic; a closely related system is Möllerfeld’s
σ-arithmetic [13], which lifts this restriction. As the µ- and the σ-arithmetics de-
fine the same sets of natural numbers, we restrict ourselves to the µ-arithmetic.

Gale–Stewart games are strong and flexible tools in descriptive set theory. In
a Gale–Stewart game G(A) with payoff A ⊆ ωω, two players alternate picking
natural numbers to for a sequence α. The first player wins the game G(A) iff
they have a strategy which guarantees the generated sequences are inside A, no
matter what the second player does. Given a set A ⊆ ωω, the set ⅁A ⊆ ω<ω is the
set of finite sequence s ∈ ω<ω such that the first player has a winning strategy
for G(A) starting from s. In other words, ⅁A is the set of winning positions for
the first player in G(A). Bradfield [6] proved that the µ-definable sets are the

Higher-order feedback computation 3

winning positions of games whose payoff sets are finite boolean combinations of
Σ0

2 sets. This was later extended by Bradfield, Duparc, and Quickert [9, 8] to
transfinite µ-formulas and transfinite boolean combinations.

Closely related to higher-order feedback computability are the feedback hy-
perjump studied by Aguilera and Lubarsky [4] and feedback 2E-computability
studied by Aguilera and Soto [5]. These concepts have two variations: a strict
one and a loose one. These refer to how the subcomputation trees are defined: in
the loose variations, ill-founded subcomputation trees can be witnesses to non-
freezing computations. We will see a similar phenomenon in subcomputation
trees for higher-order feedback computations.

Corollary 1. The following are equivalent:

1. 2-feedback semi-computability;
2. loose feedback 2E-semi-computability; and
3. computable reducibility to the loose feedback hyperjump LO.

Proof. By [5] and [4].

Outline In Section 2, we define α-feedback computability. In Section 3, we define
subcomputation trees for α-feedback computations. In Section 4, we define the
transfinite µ-arithmetic and its alternation hierarchy. In Sections 5 and 6, we
prove the equivalence between feedback computability and µ-definability.

2 Higher-order feedback computability

Fix α < ωck
1 and a computable notation for α. We define αth order feedback

Turing machines. We omit the reference to the ordinal when not ambiguous and
abbreviate “αth order feedback Turing machines” by “feedback machines”. Write
−1 ≤ β < α to mean β = −1 or β < α. We will use symbols ↑β as notation for the
outputs of the freezing oracles. Note that ↑−1 will be used to indicate convergent
computations; we also write ↑−1 as ↓. Similarly, ↑0 will indicate divergent (and
non-freezing) computations.

We can extend any standard encoding of Turing machines as natural numbers
to α-feedback Turing machines. We use the fixed encoding of α as a computable
ordering to add commands to query the freezing oracles. The encoding of freezing
queries are no different from encodings of oracle queries in a relativized compu-
tation. Kleene’s Recursion Theorem also holds for α-feedback Turing machines
by the standard proof, which will be useful for us later.

Intuitively, an α-feedback machine can query freezing oracles

fβ : Fβ → {↑β′ | −1 ≤ β′ ≤ β},

with Fβ ⊆ ω×ω and β < α. We call fβ the β-freezing oracle. The domain Fβ of fβ
contains the indices and inputs of computations which ≤ β-freeze. Given the code
e ∈ ω of a feedback machine and some input n ∈ ω, we denote the computation

4 J.P. Aguilera et al.

{e}{fβ}β<α(n) by ⟨e⟩α(n). The oracle fβ returns ↑γ∈ {↑β′ | −1 ≤ β′ < β} iff
⟨e⟩α(n) γ-freezes.

A computation (β+1)-freezes iff it queries fβ about some pair not in Fβ . If λ
is a limit, a computation λ-freezes iff it makes a query about ⟨e, n⟩ ̸∈

⋃
α<λ Fα.4

We also say that a computation 0-freezes when it is divergent and that it −1-
freezes when it is convergent. We write ⟨e⟩α(n) ↑β iff ⟨e⟩α(n) β-freezes.

Formally, we define:

Definition 1. Let α < ωck
1 . For all β < α, let Fβ ⊆ ω × ω be the least relation

such that the function fβ : Fβ → {↑β′ | −1 ≤ β′ < β} is such that ⟨e, n⟩ ∈ Fβ and
fβ(e, n) =↑γ iff ⟨e⟩α(n) makes no β′-freezing query outside of Fβ′ and γ-freezes.

A set A ⊆ ω is α-feedback computable iff there is an α-feedback machine with
index e such that:

⟨e⟩α(n) =
{
1, if n ∈ A
0, if n ̸∈ A

A set A ⊆ ω is α-feedback semi-computable iff there is an α-feedback machine
with index e such that

⟨e⟩α(n) ↓ iff n ∈ A.

Using Theorem 1, we can show that A ⊆ ω is α-feedback computable iff A and
ω \A are α-feedback semi-computable.

One should be careful that the freezing oracles depend on the fixed α. For a
more precise notation, we could write fβ as fαβ . We do not do so as we always
work with a fixed α. To see why the freezing oracles depend on α, consider
the 0-freezing oracle f10 for 1-feedback machines and the 0-freezing oracle f20 for
2-feedback machines are different partial functions. f20 has information about
halting computations which have freezing subcomputations via queries to f21 .

Note that our 1-feedback machines are equivalent to the feedback machines in
Ackerman et al. [3]. Furthermore, our 0-freezing oracle f0 for 1-feedback machines
is equivalent to their halting oracle. We could also call f0 the halting oracle, but
we prefer not to do so for uniformity of notation. Note also that 0-feedback
machines are just standard Turing machines.

Before proceeding, we show that the freezing oracles {fβ}β<α are well-defined
using simultaneous inductive definitions. We will come back to this proposition
when we show that feedback semi-computable sets are definable in µ-arithmetic.

Proposition 1. Fix α < ωck
1 . For all β < α, there is a smallest relation Fβ ⊆

ω × ω and a function fβ : Fβ → {↑β′ | −1 ≤ β′ < β} such that ⟨e, n⟩ ∈ Fβ and
fβ(e, n) =↑γ iff ⟨e⟩α(n) makes no β′-freezing query outside of Fβ′ and γ-freezes.

Proof. We define the Fβ and fβ by simultaneous inductive definitions.
Given β < α, Γβ is an auxiliary function taking sequences {gβ′}β′<α of

freezing oracles to the set of indices and inputs which β-freeze:

Γβ({gβ′}β′<α) = {⟨e, n⟩ | {e}{gβ′}β′<α(n) β-freezes}.
4 See the definition of subcomputation trees below.

Higher-order feedback computation 5

We define operators h(β,·) using the Γβ′ with β′ ≤ β:

h−1
(β,{gγ}γ<α)(↑β′) = Γβ′({gγ}β′<α) for β′ ≤ β.

Each h(β,·) can be seen as an operator on sequences of partial functions from
ω to ω. Furthermore, h(β,·) is monotone: given sequences of partial functions
{gγ}γ<α and {g′γ}γ<α such that gγ ⊆ g′γ for all γ < α, then h(β,{gγ}γ<α) ⊆
h(β,{g′

γ}γ<α). Let {fβ}β<α be the sequence of the smallest partial functions such
that of h(β,{fβ}β<α) = fβ . That is, if h(β,{f ′

β}β<α) = f ′β , then fβ ⊆ f ′β for all
β < α.

3 Subcomputation trees

Fix e, n ∈ ω and α < ωck
1 . We define a subcomputation tree Te,n to witness the

convergence, divergence, or freezing of the α-feedback computation ⟨e⟩α(n). Our
trees are similar to the subcomputation trees for 1-feedback Turing computation
found in [3].

We will also consider a trimmed version T trim
e,n of the subcomputation trees.

As the subtrees for 1-feedback computation, T trim
e,n will be wellfounded iff ⟨e⟩α(n)

is convergent or divergent, and T trim
e,n will be non-wellfounded iff ⟨e⟩α(n) is β-

freezing for some β ≥ 1. We will trim Te,n because higher-order queries allow non-
wellfounded trees to witness converging and diverging feedback computations.

After we finish the construction of Te,n and T trim
e,n , we will have:

Proposition 2. Let e, n ∈ ω and T trim
e,n be the trimmed subcomputation tree of

⟨e⟩α(n). Then:

1. The computation ⟨e⟩α(n) is non-freezing iff T trim
e,n is well-founded.

2. The computation ⟨e⟩α(n) is β-freezing iff T trim
e,n has an infinite path ρ =

{⟨ei, ni⟩}i∈ω such that

β = lim sup{βi + 1 | the edge between ⟨ei, ni⟩ and ⟨ei+1, ni+1⟩ is labeled βi}.

Furthermore, the path ρ is the rightmost infinite path in the tree T trim
e,n .

Fix an index e and an input n, we build the subcomputation tree of ⟨e⟩α(n)
by stages. The subcomputation tree Te,n will be a labeled subtree of ω<ω. We
label each node of Te,n with a pair ⟨e′, n′⟩ consisting of an index e′ for a feedback
Turing machine and an input n′. At each node ⟨e′, n′⟩, we simulate a feedback
machine with index e′ starting on input n′. At all times there is a node of
Te,n that is in control of the computation. On successor stages, we will run
one instruction in the computation being simulated at the control node. When
querying the freezing oracle fβ about ⟨e′′, n′′⟩, we pass the control to a new child
node labeled ⟨e′′, n′′⟩. We label the edge between ⟨e′, n′⟩ and ⟨e′′, n′′⟩ with the
ordinal β < α.

6 J.P. Aguilera et al.

⟨e, n⟩

⟨e0, n0⟩ ⟨e′, n′⟩ ⟨e′′, n′′⟩ ↓

⟨e1, n1⟩ ⟨e′0, n′
0⟩ ⟨e′1, n′

1⟩ . . .

⟨e2, n2⟩

...

0

β′>β

↑0

β

β

↑β

Fig. 1. The tree T⟨e,n⟩ of a converging computation ⟨e, n⟩ with diverging and freezing
subcomputations.

First stage We add root node to Te,n. Label the root node by ⟨e, n⟩; it is initially
in control of the computation. Go to the next construction stage.

Successor stages Suppose the control is currently at the node ⟨e′, n′⟩ of Te,n.
What we do in this stage of the construction depends on what is the next in-
struction on the computation being simulated at ⟨e′, n′⟩.

Suppose the next instruction is not a query to a freezing oracle. Run the
instruction. If the computation does not converge, we go to the next stage; the
control stays at the same node. If the computation converges, there are two
possibilities. If the control node is the root node, the whole computation halts.
If the control node is not the root node, we pass control to its parent node; the
parent then gets the answer ↓ to its freezing query and we go to the next stage.

Suppose the next instruction is a query to a freezing oracle hβ about a com-
putation ⟨e′′, n′′⟩. We create a new child node to the right of all existing children.
We label the child node by ⟨e′′, n′′⟩ and the path between parent and child by
β. The the child node now controls the computation. Go to the next stage.

Limit stages Suppose that we are on a limit stage of the construction of Te,n. In
this stage, we decide if some subcomputation of ⟨e⟩α(n) diverged or froze.

Suppose that the control goes back to a node ⟨e′, n′⟩ infinitely many times
in a final segment of our construction (or that the control stays at a same node
⟨e′, n′⟩). In this case, the computation at the node ⟨e′, n′⟩ diverges. If ⟨e′, n′⟩ is
the root node, then the whole computation diverges. If ⟨e′, n′⟩ is not the root
node, pass the control to its parent and answer the parent’s freezing query with
↑0; we then go to the next stage.

Suppose there is no node ⟨e′, n′⟩ such that the control goes back to ⟨e′, n′⟩
infinitely many times in a final segment of the construction up to this point.
Let ρ = {⟨ei, ni⟩}i∈ω be the rightmost infinite path in the tree. The control
of the computation will have been in nodes of ρ on infinitely many stages. Let

Higher-order feedback computation 7

βi be the ordinal labeling the edge between ⟨ei, ni⟩ and ⟨ei+1, ni+1⟩. Let β :=
lim sup{βi + 1 | i ∈ ω}. We pass the control to the lowest node ⟨ei, ni⟩ in the
path, if it exists, such that the edge between ⟨ei, ni⟩ and ⟨ei+1, ni+1⟩ is labeled by
some β′ ≥ β. We then answer ↑β to the freezing query done in the computation
at ⟨ei, ni⟩. If there is no such node, then the whole computation β-freezes.

Trimmed subcomputation trees We now define the trimmed subcomputation tree
T trim
e,n for ⟨e⟩α(n), given the subcomputation tree Te,n. Let ρ = {⟨ei, ni⟩}i∈ω be

an infinite path in Te,n. Let βi be the ordinal labeling the edge between ⟨ei, ni⟩
and ⟨ei+1, ni+1⟩ and β := lim sup{βi + 1 | i ∈ ω}. Let ⟨ei, ni⟩ lowest in the path
such that the edge between ⟨ei, ni⟩ and ⟨ei+1, ni+1⟩ is labeled by some β′ ≥ β.
For all j > i, ⟨ej , nj⟩ is not in T trim

e,n . A node ⟨e′, n′⟩ of Te,n is in T trim
e,n iff it was

not excluded by this procedure.

4 The µ-arithmetic

The language Lµ of µ-arithmetic is obtained by adding countably many set
variables and the fixed-point operators µ and ν to the language L1 of first-order
arithmetic. Therefore, the µ-arithmetic has two types of terms: number and set
terms.

Number terms are build up from constants 0 and 1, number variables, addi-
tion, and multiplication:

t := 0 | 1 | x | t+ t | t× t.

We define µ-formulas and µ-terms by simultaneous induction. Set terms are set
variables or fixed-points:

T := X | µxX.φ | νxX.φ,

Atomic formulas are of the form t = t′ and t ∈ T , where t, t are number terms
and T is a set term. Formulas are defined as follows:

φ := t = t | t ∈ T | ¬φ | φ ∨ φ | φ ∧ φ | ∃x.φ | ∀x.φ |
∨
i<ω

φi |
∧
i<ω

φi.

The set terms µxX.φ and νxX.φ are well-formed iff X is positive in φ. That
is, each occurrence of X in φ is in the scope of an even number of negations
(possibly none). The formulas

∨
i<ω φi and

∧
i<ω φi are only defined if there

is a computable enumeration of the formulas φi and there is a finite collection
X of number and set variables such that the free variables of each φi are in
X . This restriction allows us to, given a transfinite formula with only positive
occurrences of variables, obtain a closed set term with finitely many applications
of fixed-point operators.

We use η to denote either µ or ν. Note that the fixed-point operator ηxX
in a set term ηxX.φ binds both the occurrences of the number variable x and

8 J.P. Aguilera et al.

the occurrences of the set variable X. We usually denote the variables in a fixed
point operator ηxX by lowercase and uppercase versions of the same letter.

We can encode the µ-formulas as usual. We only need to take care when
encoding transfinite disjunctions and conjunctions. As we only to consider con-
junctions and disjunctions of recursively enumerable many formulas, we can
code this with indexes for programs enumerating codes for the formulas in these
conjunctions and disjunctions. A note of caution: a number may encode some
non-well-formed formula with non-wellfounded syntax tree, but this will not be
a problem since we will never quantify over all the codes.

We interpret the µ-formulas over the set of natural numbers, where the first-
order objects and set membership have their standard interpretations. We only
need to define the interpretation of the fixed-point operators. If X is positive in
φ(x,X), define the operator Γφ : P(ω) → P(ω) by:

Γφ(A) := {n ∈ ω | φ(n,A)}.

We can show by induction on the structure of φ that, if X is positive in φ,
then Γφ is monotone: if A ⊆ B, then Γφ(A) ⊆ Γφ(B). By the Knaster–Tarski
Theorem, Γφ has least and greatest fixed-points. Denote by µxX.φ the least
fixed-point of Γφ and by νxX.φ the greatest fixed-point of Γφ.

We can use games to define a different but equivalent alternative for the
µ-arithmetic’s semantics. We sketch it here at is is quite useful to understand
the meaning of µ-formulas. Given a µ-formula φ and interpretations for its free
set variables, Verifier and Refuter play a game to decide whether φ hold. When
discussing formula ψ, one of the players will have to propose a new formula to
discuss. For example, when discussing ∃x.ψ(x), Verifier has to choose some ψ(n);
similarly, when discussing

∧
i∈ω ψi, Refuter has to choose some ψi. If discussing

¬ψ, the players switch roles and discuss ψ. When discussing τ ∈ ηxX.ψ, the
players discuss ψ(τ, ηxX.ψ). When discussing τ ∈ X, the players go to τ ∈
ηxX.ψ, where ηxX.ψ the smallest formula where X is bound; in this case, we
say that X was regenerated. We summarize the possible plays in Table 1 below.

At a position of the form t = s, Verifier wins iff the equality is true. Let ρ be
an infinite play and X0, . . . , Xn be the variables regenerated infinitely often and
η0.ψ0, . . . ηn.ψn be the associated formulas. Let ηi be the fixed-point operator
with biggest scope. Verifier wins ρ iff ηi is a ν.

For context, the evaluation game for any transfinite µ-formula is determined
because it can be written as a ∆0

3 Gale–Stewart game; and so it is determined
by Borel determinacy. See [9] for a proof that Verifier wins the evaluation game
for φ iff φ is true.

The alternation hierarchy classifies the µ-formulas according to the alterna-
tion of least and greatest fixed-point operators. For all computable α, the αth
level of the alternation hierarchy is defined by:

– Σµ
0 = Πµ

0 := all first-order formulas (with set variables);
– Σµ

α+1 := the closure of Σµ
α ∪Πµ

α under ∧,∨,∃,∀ and τ ∈ µxX.φ;
– Πµ

α+1 := the closure of Σµ
α ∪Πµ

α under ∧,∨,∃,∀ and τ ∈ νxX.φ;

Higher-order feedback computation 9

Table 1. The rules of evaluation game for µ-arithmetic.

Verifier Refuter
Position Admissible moves Position Admissible moves
ψ1 ∨ ψ2 {ψ1, ψ2} ψ1 ∧ ψ2 {ψ1, ψ2}
∃x.ψ(x) {ψ(n) | n ∈ ω} ∀x.ψ(n) {ψ(n) | n ∈ ω}∨

i∈ω ψi {ψi | i ∈ ω}
∧

i∈ω ψi {ψi, | i ∈ ω}
τ ∈ µxX.ψ(x,X) {ψ(τ, µxX.ψ)} τ ∈ νxX.ψ(x,X) {ψ(τ, νxX.ψ)}

– Σµ
λ := the closure of

⋃
α<λΣ

µ
α under recursive enumerable disjunctions∨

i<ω, when λ is a limit;
– Πµ

λ := the closure of
⋃

α<λΣ
µ
α under recursive enumerable conjunctions∧

i<ω, when λ is a limit.

We say that A ⊆ ω is Σµ
α+1-definable iff there is a Σµ

α+1-formula n ∈ µxX.φ such
that A = {n ∈ ω | n ∈ µxX.φ}. If λ is a limit ordinal, A ⊆ ω is Σµ

λ -definable
iff there is a Σµ

λ -formula
∨

i∈ω n ∈ µxX.ψi such that A = {n ∈ ω |
∨

i∈ω n ∈
µxX.ψi}.

It will also be useful to consider formulas in a kind of prenex normal form.
Lubarsky [12] showed that all finite µ-formulas can be put in the form:

τn ∈ µxnXn.τn−1 ∈ νxn−1Xn−1.τn−2 ∈ µxn−2Xn−2. . . . τ1 ∈ ηx1X1.φ,

with φ first-order formula.
Bradfield et al. [9, 8] extended Lubarsky’s normal form to transfinite formulas.

A transfinite µ-formula is in normal form iff it is:

– a finite µ-formula in normal form;
– an infinite disjunction or conjunction of µ-formulas in normal form; or
– a formula of the form τ ∈ ηxX.φ where φ is in normal form.

Bradfield et al. show that all transfinite µ-formulas are equivalent to one in
normal form by induction of the construction of formulas and Lubarsky’s result.

5 µ-definability implies feedback computability

In this section, we define an evaluation function eval for Σµ
α-formulas using α-

feedback machines. The function eval receives the code of a formula φ (along with
some auxiliary input) and outputs 1 iff φ is true. To evaluate a given formula
we will decompose it and check it by parts.

Feedback will be used in two places. First, to check quantifiers, infinite dis-
junctions, and infinite conjunctions. For example, we can imagine a program
which evaluates φ(n) for all n ∈ ω and stops when it finds some n such that
φ(n) fails; the formula ∀x.φ(x) is true iff this program does not stop. We can
verify this with a 0-freezing query. Second, to evaluate fixed-point formulas. eval

10 J.P. Aguilera et al.

β-freezing on input φ will be (roughly) equivalent to φ being false; a (β + 1)-
freezing query tells us if φ is true.

We will make heavy use of Kleene’s Recursion Theorem in the proof. It holds
for α-feedback computability, by the standard proof.

Theorem 2. Let A ⊆ ω and α < ωck
1 . If A is Σµ

α-definable then A is α-feedback
semi-computable.

See Appendix A for a proof of Theorem 2.

6 Feedback computability implies µ-definability

In this section, we show that α-feedback semi-computable sets are Σµ
α-definable.

To do so, we show that the graph of the freezing oracle fα is Σµ
α-definable. The

heart of this proof is Proposition 1, but we need to take care when stating the
inductive definitions: µ-formulas can only have finitely many free set variables.
We show how we can overcome this technicality using an encoding for α and
only two set variables.

Theorem 3. Let A ⊆ ω and α < ωck
1 . If A is αth-order feedback semi-computable

then A is Σµ
α-definable.

Proof. Fix α < ωck
1 . We prove that the graph of fα is Σµ

α-definable for α a
successor ordinal. The case for limit ordinals is similar; we will indicate the
changes in the appropriate place.

We use computation histories for computations ⟨e⟩α(n). A computation his-
tory encodes a finite initial segment of a computation. Such encoding is possible
because at each step, the computation only needs a finite amount of memory.
Any such encoding is good as long that we can decide if some natural number
encodes a computation history or not. We also require that, from a computation
history h, we can recover the index e, the initial input n and the step-by-step
computation of ⟨e⟩α(n) up to a finite time. Note that a freezing oracle query
counts as only one step here. A computation will be halting iff it has a finite
computation history which halts (this history will have no extension). A com-
putation diverges iff there are computation histories of unbounded length. For
β ≤ α, a computation β-freezes iff there is a sequence of histories {hi}i∈ω such
that: e0 = e and n0 = n; hi is a computation history for ⟨ei⟩α(ni) ending in a
query to fβi

about ⟨ei+1⟩α(ni+1); and β = lim sup{βi + 1 | i ∈ ω}.
We will first give a wrong proof: we define the graph of the freezing oracle

fβ by a Σµ
β+1-formula χβ with free variables Xβ+1, Xβ+2, . . . , Xα. For β ≥ ω · 2,

χβ(x) is not a well-formed µ-formula. We explain later how to modify the χβ

and obtain proper µ-formulas.
The graph of the freezing oracle f0 is defined by the formula χ0(x) defined as

follows. χ0(x) is of the form x ∈ µx0X0.φ0(x0). φ0(x0) is true if x0 = ⟨e, n, ↓⟩ and
there is a computation history witnessing that ⟨e⟩α(n) halts; or if x0 = ⟨e, n, ↑0⟩
and for all k there is a computation history of length k for ⟨e⟩α(n) which is non-
halting. Note that Xβ is free in χ0 for all 0 < β ≤ α, since the only fixed-point
operator in χ0 is µx0X0.

Higher-order feedback computation 11

Suppose the formula χβ defines the graph of fβ . We now define the graph
of the freezing oracle fβ+1 with a formula χβ+1. The formula χβ+1(x) is of the
form x ∈ µxβ+1Xβ+1.φβ+1(xβ+1). Here, φβ+1(xβ+1) is true if either χβ(xβ+1)
holds, or xβ+1 = ⟨e, n, ↑{ β + 1}⟩ and there is a sequence of histories {hi}i∈ω

witnessing that ⟨e⟩α(n) β′-freezes for β′ with β ≤ β′ < α. The last disjunct can
be computed by a greatest fixed-point: start with the set of all finite sequences
of histories and trim off the sequences which cannot be the initial segments of
such an witnessing history {hi}i∈ω; the resulting tree is non-empty only if such
sequence of histories exist.

If we have defined χβ for all β < λ, we define χλ(x) by
∨

β<λ χβ(x). When
proving that λ-feedback computable are Σµ

λ -definable, we define χλ similarly,
but omit the references for β′ > β in each χβ .

We use α’s encoding on ω to substitute references for Xβ with references
to Xα. We can do so because a query to fβ is a query to fα where we ignore
the output if it is ↑β′ for some β′ > β. The corrected formula is a well-formed
µ-formula equivalent to the non-well-formed formula. This finishes the definition
of the freezing oracle fα.

Now, suppose A is αth order feedback semi-computable via a machine with
index e. For all β < α, we can recover fβ from fα using the computable encoding
of α. Thus n ∈ A iff there is a computation history for e starting with input
n where the computation halts; here, the computation histories can consult the
freezing oracles {fβ}β≤α.

Acknowledgments. This study was funded by FWF project TAI-797.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Ackerman, N.L., Freer, C.E., Lubarsky, R.S.: Feedback computability on cantor
space 15(2), 7:1–7:18

2. Ackerman, N.L., Freer, C.E., Lubarsky, R.S.: Feedback Turing Computability, and
Turing Computability as Feedback. In: 30th Annual ACM/IEEE Symposium on
Logic in Computer Science. pp. 523–534. https://doi.org/10.1109/LICS.2015.55

3. Ackerman, N.L., Freer, C.E., Lubarsky, R.S.: An introduction to feedback turing
computability 30(1), 27–60. https://doi.org/10.1093/logcom/exaa002

4. Aguilera, J.P., Lubarsky, R.S.: Feedback hyperjump 31(1), 20–39.
https://doi.org/10.1093/logcom/exaa085

5. Aguilera, J.P., Soto, M.: Type-2 feedback computability
6. Bradfield, J.C.: Fixpoints, games and the difference hierarchy 37(1), 1–15.

https://doi.org/10.1051/ita:2003011
7. Bradfield, J.C.: The modal mu-calculus alternation hierarchy is strict 195(2), 133–

153. https://doi.org/10.1016/S0304-3975(97)00217-X
8. Bradfield, J.C., Duparc, J., Quickert, S.: Fixpoint alternation and the Wadge hi-

erarchy, https://www.julianbradfield.org/Research/fixwadge.pdf

12 J.P. Aguilera et al.

9. Bradfield, J.C., Duparc, J., Quickert, S.: Transfinite extension of the mu-calculus.
In: Ong, L. (ed.) Computer Science Logic, vol. 3634, pp. 384–396. Springer Berlin
Heidelberg. https://doi.org/10.1007/11538363_27

10. Kozen, D.: Results on the propositional µ-calculus 27(3), 333–354.
https://doi.org/10.1016/0304-3975(82)90125-6

11. Lubarsky, R.S.: ITTMs with feedback. In: Schlinder, R. (ed.) Ways of Proof Theory,
pp. 341–354

12. Lubarsky, R.S.: µ-definable sets of integers 58(1), 291–313.
https://doi.org/10.2307/2275338

13. Möllerfeld, M.: Generalized inductive definitions: The µ-calculus and Π1
2-

comprehension
14. Moschovakis, Y.: Descriptive Set Theory, Mathematical Surveys and Monographs,

vol. 155. American Mathematical Society. https://doi.org/10.1090/surv/155
15. Rogers, H.: Theory of Recursive Functions and Effective Computability
16. Welch, P.: Gδσ-games and generalized computation, https://arxiv.org/abs/1509.

09135

A Proof of Theorem 2

Let A ⊆ ω and α < ωck
1 . We show that, if A is Σµ

α-definable, then A is α-feedback
semi-computable.

We begin by defining an evaluation function eval for Σµ
α-formulas. We then

prove by induction on β ≤ α that the Σµ
β -definable sets are α-feedback semi-

computable.
For this proof, we work with a fixed set of set variables {Xi | i ∈ ω}. We also

assume that the µ-formulas are in normal form. We do not consider formulas
with free number variables. eval is defined by recursion on the structure of the
Σµ

α-formulas: we begin at the first order formulas and go up level-by-level.
The function eval(φ, s) takes as input a formula φ, and a sequence s of

natural numbers. The sequence s is a sequence of indices of (possibly partial)
characteristic function of sets. If i < length(s) then si denotes the index in the ith
position of s. If i ≥ length(s), then si is the index for the characteristic function
of the empty set. s will be useful when evaluating the fixed-point operators.

We define eval for first-order formulas, along with auxiliary functions exists
and forall:

– eval(t = t′, s) :=

{
1, if t = t′

0, otherwise

– eval(t ∈ Xi, s) :=

{
1, if ⟨si⟩α(t) = 1
0, otherwise

– eval(¬ψ, s) :=
{
1, if eval(ψ, s) = 0
0, otherwise

– eval(ψ ∧ θ, s) :=
{
1, if eval(ψ, s) = eval(θ, s) = 1
0, otherwise

– eval(ψ ∨ θ, s) :=
{
1, if eval(ψ, s) = 1 or eval(θ, s) = 1
0, otherwise

Higher-order feedback computation 13

– forall(ψ(x), s, i) :=

{
0, if eval(ψ(i), s) = 0
forall(ψ(x), s, i+ 1), otherwise

– eval(∀x.ψ, s) :=
{
1, if forall(ψ(x), s, 0) diverges
0, otherwise

– exists(ψ(x), s, i) :=

{
1, if eval(ψ(i), s) = 1
exists(ψ(x), s, i+ 1), otherwise

– eval(∃x.ψ, s) :=
{
1, if exists(ψ(x), s, 0) converges
0, otherwise

On forall and exists, ψ(i) is obtained by substituting the indicated number
variable x by i.

We similarly define eval on infinitary formulas using auxiliary functions
conjunction and disjunction:

– disjunction(
∨

i∈ω ψi, s, i) :=

{
1, if eval(ψi, s) = 1
disjunction(

∨
i∈ω ψi, s, i+ 1), otherwise

– eval(
∨

i∈ω ψi, s) :=

{
1, if disjunction(

∨
i∈ω ψi, s, 0) converges

0, otherwise

– conjunction(
∧

i∈ω ψi, s, i) :=

{
0, if eval(ψ(i), s) = 0
conjunction(

∧
i∈ω, s, i+ 1), otherwise

– eval(
∧

i∈ω ψi, s) :=

{
0, if conjunction(

∧
i∈ω ψi, s, 0) converges

1, otherwise

Remember that as we only allow recursively enumerable conjunctions and dis-
junctions, we can recover ψi from a code of

∧
i∈ω ψi or

∨
i∈ω ψi.

We now extend eval to formulas with fixed-points. Suppose t ∈ µxX.ψ is a
Σµ

β+1-formula, define:

eval(t ∈ µxiXi.ψ, s) :=

1, if eval(ψ(t), s[Xi := ∅]) = 1
or eval(ψ(t), s[Xi := µxiXi.ψ]) = 1

↑β , otherwise

Where s[X := ∅] is obtained by putting an index for the empty set in the
ith position of s, and s[Xi := µxX.ψ] is obtained by putting an index for
λn.eval(n ∈ µxiXi.ψ) in the ith position of s. If s becomes a longer sequence
by this procedure, fill the unused positions of s with indexes for the empty set.

If we have extended eval to Σµ
β -formulas, extend it to Πµ

β -formulas by:

eval(t ∈ νxX.ψ, s) :=

{
1, if eval(t ∈ µxX.¬ψ(¬X), s) β-freezes
0, otherwise

This finishes the definition of eval.
We prove by bounded induction on β ≤ α that the Σµ

β -definable sets are
α-feedback semi-computable. We slightly strengthen the induction hypothesis
to show that, for β < α, Πµ

β -definable sets are α-feedback computable.

