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Abstract. We prove that every Σ0
2 Gale-Stewart game can be won via a

winning strategy τ which is ∆1-definable over Lδ, the δth stage of Gödel’s

constructible universe, where δ = δσ1
1
, strengthening a theorem of Solovay

from the 1970s. Moreover, the bound is sharp in the sense that there is a Σ0
2

game with no strategy τ which is witnessed to be winning by an element of

Lδ.

1. Introduction

To each A ⊂ NN corresponds a two-player, perfect-information game GA in
which Players I and II alternate turns playing infinitely many natural numbers
x(i), eventually producing a sequence x ∈ NN. Player I wins if and only if x ∈ A.
We regard N as a discrete space and endow NN with the product topology; its
elements we call reals. These games were introduced by Gale and Stewart, who
proved:

Theorem 1 (Gale-Stewart [10]). Suppose A is Σ0
1. Then one of the players has a

winning strategy for GA.

A natural question is: How complicated must the winning strategies for open
games be? That is: What is the smallest complexity class in which one is guaranteed
to find a winning strategy for each open game? The answer to this question is well-
known and we call it the strong Gale-Stewart theorem. Its earliest appearance that
we know of is in Moschovakis [17], though the theorem as stated here seems to have
been part of the folklore at the time. The second half of the theorem is due to Blass
[7].

Theorem 2 (Strong Gale-Stewart Theorem). Suppose A is Σ0
1. Then one of the

players has a winning strategy for GA recursive in O. Moreover, this is optimal:
there is a Σ0

1 game for which no player has a ∆1
1 winning strategy.

If it is Player I who has a winning strategy, one can always find a strategy which
is ∆1

1, but Player II might need to look beyond ∆1
1 to find one.

Analogues of the Strong Gale Stewart Theorem for games with payoff in classes
other than the Σ0

1 have been studied at length in the past. We give a few examples.
Versions of the theorem for Σ0

3 sets and Σ0
4 sets have been obtained by Welch [24]

and Hachtman [12]. Building on work of Friedman [9], Martin established a similar
result for ∆1

1 games. For Π1
1 games, Martin [15] showed that the strategies can

always be taken to be recursive in 0], and Friedman [8] showed that this is best
possible, in the sense that some of these games have no winning strategy in L (see
also Harrington [13]). For projective games, Woodin showed that the strategies
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can be found in a model of the form M ]
n(x) and that this is optimal (see Müller-

Schindler-Woodin [19]). Similar results can be obtained for games on other sets.
Martin’s argument for Π1

1 shows that Π1
1 games with moves in R always have a

winning strategy which is continuously reducible to R], while Martin-Steel [16]
show that this is best possible, in the sense that some of these games do not have
winning strategies in L(R). An analogous result for projective games with moves
in R follows from the results in [4]. General facts surrounding Strong Gale-Stewart
theorems follow from the periodicity theorems of Moschovakis (see [18]).

Oddly, less is known about Σ0
2. It is the intent of this article to change this state

of affairs, and answer as thoroughly as we can:

Question 3. What is the analogue of the Strong Gale-Stewart theorem for Σ0
2?

The study of Σ0
2 began with:

Theorem 4 (Wolfe [25]). Suppose A is Σ0
2. Then one of the players has a winning

strategy for GA.

Solovay (unpublished, but see Kechris [14] or Moschovakis [18]) obtained partial
results about exactly where winning strategies for such games appear. Specifically,
he identified the smallest class which is guaranteed to contain winning strategies
for Σ0

2 games that are determined in favor of Player I. What is left to do is to find
where winning strategies for Player II appear.

Let us describe Solovay’s theorem. Consider a monotone operator

φ : P(N)→ P(N),where A ⊆ B → φ(A) ⊆ φ(B).

We can iterate φ transfinitely to obtain an inductive definition as follows:

W 0 = ∅

W<α =
⋃
β<α

W β

Wα = φ(W<α)

W∞ =
⋃
β

W β .

Due to matters of cardinality, there is a countable ordinal κ such that φκ = φκ+1,
and the least such κ is called the closure ordinal of φ and denoted by |φ|. Solovay
proved that if Player I has a winning strategy in a Σ0

2 game, then she has one which
is given by a Σ1

1 inductive definition. In fact, Solovay proved the stronger result
that aΣ0

2 = Σ1
1-IND. Let

σ = sup{|φ| : φ ∈ Σ1
1}.

(More generally, σmn is sup{|φ| : φ ∈ Σmn }, so that σ is really an abbreviation for
σ1

1 .)
A relation on a subset of an ordinal α is α-r.e. if it is Σ1-definable over Lα.

Define

δα = sup{γ : there is an α-r.e. wellorder of length γ}.
Thus, δα is one kind of analogue of the Church-Kleene ordinal ωCK1 at the level of
Lα. Much of the focus throughout this article will be on δσ, therefore we abbreviate
δσ as δ. According to a theorem of Gostanian [11], δ is inadmissible, unlike the
case for ω and ωCK1 . (In fact, it can be shown that σ is the least ordinal for which
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the notions of “supremum of all recursive well-orderings” and “next admissible
ordinal” do not coincide.) By the inadmissibility of δ, there are sets of integers
which are ∆1-definable over Lδ but not elements of Lδ, which fact enables the
following theorem.

Theorem 5. Suppose A is Σ0
2. Then one of the players has a winning strategy for

GA which is ∆1-definable over Lδ.

We do not know if the bound given by Theorem 5 is optimal, as discussed in
the questions at the end. What we do know is that if we strengthen the conclusion
of Theorem 5 slightly, then the bound obtained is optimal. The strengthening we
need involves the difference between having a winning strategy and knowing that
you have a winning strategy. By way of illustration, consider the simpler setting of
Σ0

1 games. As usual, we think of a Σ0
1 game as being given by pruning the full tree

N<N to a subtree T , and it is the goal of Player I to reach a leaf. Now consider an
example in which T is well-founded. Absolutely any strategy for Player I would be
winning! But the only way we can see to know that, is to have a function providing
the ordinal ranks of the nodes of T . Similarly, in our setting of Σ0

2, strategies for
Player II will be witnessed as winning by providing certain ordinal ranks for nodes
in trees. Our intention is then to show that, while you may get lucky and have a
winning strategy appear in L way before stage δ, in order to get a witness which
guarantees that your strategy is winning, you do have to go all the way to δ.

This brings up a fundamental problem. It will be easy enough to show that the
ordinal ranks we choose to assign to the trees we define will be cofinal in δ. But how
do we know that somebody more clever won’t be able to find a different, perhaps
better, way to witness that a strategy is winning? One that doesn’t have to go all
the way through δ? By way of addressing this objection, we will define what seems
to be the most general notion possible of witnessing that a strategy is winning. We
state Definition 6 in its lightface form, noting that it relativizes to Borel games
the natural way. Below, a definition for a ∆1

1 set A is a formula ψ ∈ Σ0
α for some

α < ωCK1 such that

∀x
(
x ∈ A↔ ψ(x, y)

)
.

Definition 6. Consider a game GA induced by some ∆1
1 set A ⊆ NN, as given by

a Σ0
α definition ψ (for some α < ωCK1 ). A witnessed winning strategy for GA is a

triple (τ, φ, p) such that:

• φ(x, y) is a ∆0 formula in the language of set theory, with the free variables
x and y, such that for all τ̄ and all admissible sets M containing τ̄ , we have
M |= ∃xφ(x, τ̄) iff (in V ) τ is a winning strategy for the game defined by
ψ;
• ∃xφ(x, τ) holds in every admissible set containing τ ; and
• φ(p, τ).

Why are there any witnessed winning strategies at all? For any Borel game A, it
is straightforward that the assertion of τ being a winning strategy is Π1

1: “for every
real s, the outcome τ ∗ s of Player I using τ against the input s is in A, or for every
s the outcome of Player II using τ against s is not in A”. Moreover, this assertion
is uniform in the definition of A. By a result of Barwise, Gandy, and Moschovakis
[6], there is a uniform translation of Π1

1 formulas χ into Σ1 formulas χ∗ so that for
all x ∈ R, we have (N, x) |= χ(x) if and only if Lωx1 |= χ∗(x), where ωx1 denotes the
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least x-admissible ordinal. Hence there is at least one φ which is suitable for use as
an entry in a witnessed winning strategy. Then every winning strategy τ (for GA
given by ψ) will have some p witnessing ∃xφ(x, τ).

Proofs of determinacy usually produce both a winning strategy and a witness for
it, simultaneously, with the two having roughly the same complexity. Indeed, the
distinction between winning strategies and witnessed winning strategies is not usu-
ally made, because witnesses can always be obtained easily (e.g., in a ∆1

1 way) from
winning strategies; however, it appears to be a subtlety arising when considering
the complexity of strategies for Σ0

2 games, since the ordinal δ is inadmissible.

Theorem 7. Suppose A is Σ0
2. Then, one of the players has a witnessed winning

strategy (τ, φ, p) for GA in which τ and p are ∆1-definable over Lδ.
Moreover, this is optimal: for each δ̄ < δ there is a Σ0

2 game for which no player
has a witnessed winning strategy definable over Lδ̄.

2. Proof of Theorem 5

We begin by recalling some facts. A set M is called admissible if (M,∈) |= KP.
An ordinal α is admissible if Lα is admissible. For an ordinal α, we denote by

α+

the smallest admissible ordinal greater than α. If α is an admissible limit of ad-
missibles, we say that α is recursively inaccessible. Let θ(x) be a formula in the
language of second-order set theory. We say that α reflects θ if

∀β < α
(
Lα |= θ(β)→ ∃ᾱ < α

(
β < ᾱ ∧ Lᾱ |= θ(β)

))
.

(To be clear, since θ is second-order, its class quantifiers range over all possible
subsets of the model over which the formula is being interpreted.) We say that α is
Σ1

1-reflecting if it is admissible and it reflects every Σ1
1 formula. If so, α is recursively

inaccessible. A classical theorem of Barwise, Gandy, and Moschovakis [6] asserts
that Σ1

1 sentences can be uniformly translated into Π1 sentences about the next
admissible set. By a theorem of Aczel and Richter [1], σ is the least Σ1

1-reflecting
ordinal. Note also that it is the least ordinal which reflects Σ1

1 formulas without
parameters. σ has many more different characterizations and we refer the reader
to Section 4 of [3] for a compilation of them. For background on admissibility, we
refer the reader to Barwise [5]. For background in descriptive set theory and infinite
games, we refer the reader to Moschovakis [18].

2.1. Σ0
2 games. The first step to proving the theorem is to recall the proof Σ0

2-
determinacy. The proof is essentially Wolfe’s, but presented as in Solovay’s ar-
gument, which clarifies several considerations of complexity. We will need to pay
extra attention to how certain objects are defined, since ultimately our complexity
bound will depend on a reflection argument.

Let A be a Σ0
2 set of reals. A can be assumed to be of the form

x ∈ A↔ ∃n∀mR(n,m, x � 2m)

for some recursive relation R. For conceptual ease, we may assume that, for each
n, R is closed downwards: if R(n,m, x � 2m) and k < m then R(n, k, x � 2k).
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In the proof, we consider a family of auxiliary games G(X, s). In G(X, s), Players
I and II take turns playing natural numbers to produce a sequence x, after which
Player I wins if and only if

∃n < lth(s)∀mR(n,m, s_x � 2m) ∨ s_x � 2m ∈ X,
where s_x � 2m denotes the first 2m elements of the concatenation of s and x.

We consider the operator X 7→ φ(X) given by

φ(X) = {s : lth(s) is even and Player I has a winning strategy for G(X, s)}.

Claim 8. φ is a positive Σ1
1 operator.

Proof. It is positive, since G(X, s) is a Π0
1 game and X appears only positively in

its definition. φ is an operator in aΠ0
1, where a denotes the game quantifier. By a

theorem of Svenonius (see Barwise [5, Chapter VI]), aΠ0
1 is equal to Σ1

1. �

We consider the inductive definition given by φ and denote the stages by Wα as
in the introduction.

Claim 9. Suppose s ∈W∞. Then, Player I has a winning strategy for GA from s.

Proof. Let ξ0 be such that s ∈ W ξ0 and let σ0 be the strategy witnessing this.
Playing according to σ0 guarantees that one of the following holds:

(1) after infinitely many turns, we have a play x with the following property:
for some n < lth(s), we have R(n,m, s_x � 2m) for all m; or

(2) after finitely many turns, we have a play s1 such that s_s1 ∈W ξ1 for some
ξ1 < ξ0.

In the first case, Player I wins the game. In the second case, we obtain a strategy σ1

for the game G(W ξ1 , s_s1). Since there cannot be an infinite descending sequence
of ordinals, repeating this procedure eventually leads to an infinite run of the game
won by Player I. �

Claim 10. Suppose s is of even length and s 6∈W∞. Then Player II has a winning
strategy for GA from s.

Proof. Since W∞ is a fixed point of φ, W∞ is the set of all positions s such that
Player I has a winning strategy in G(W∞, s). This is a Π0

1 game and thus deter-
mined for each s, so Player II has a winning strategy in it if Player I does not.

In particular, since we have chosen an s not in W∞, there is a strategy σs for
Player II. If Player II follows this strategy for infinitely many rounds, it produces
a sequence x such that

∀n < lth(s)∃m¬R(n,m, s_x � 2m) ∧ s_x � 2m 6∈W∞.
This means if Player II follows the strategy, for each n < lth(s) there is a finite
numbermn witnessing that II has won the nth game, in that ¬R(n,mn, s

_x � 2mn),
while also s_x � 2mn 6∈W∞. There are only finitely many such n to consider, and
so after finitely many steps we will have produced a sequence s1 (of length say 2m)
witnessing that II has won the nth game for all n < lth(s):

∀n < lth(s)∃mn ≤ m¬R(n,mn, s
_s1 � 2mn) ∧ s_s1 6∈W∞.

Now we repeat the construction. Since s_s1 6∈ W∞, Player II has a winning
strategy in G(W∞, s_s1), and thus we obtain a new strategy σs1 which Player II
can now follow to obtain a new position s2 such that the conditions above hold
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with s_s_1 s2 in place of s_s1 and s_s1 in place of s. Repeating this infinitely
often results in a play x such that

∀n∃mn ¬R(n,mn, s
_x � 2mn),

which is the winning condition for Player II in GA. �

2.2. Partial strategies. Solovay’s argument relied on the fact that, according to
Claims 9 and 10, if Player I has a winning strategy for GA, then she has one which is
computable from W∞ and indeed from some W ξ with ξ < |φ| ≤ σ. As observed by
Welch [23], the argument also shows that the strategies for Player II lie within the
next admissible set after Lσ. It is easy to see though that σ+ is not the least upper
bound for the existence of strategies: the collection of games that Player I wins is
definable over Lσ, so the collection of games that Player II wins is a set in Lσ+ ;
since the function that takes such a game and returns the least winning strategy
for II is Σ1-definable, its range has to be bounded beneath the next admissible set.

In order to optimize this upper bound, we appeal to the uniformity with which
each of the strategies for the auxiliary games can be computed, in the instances
where those games are won by Player II. We will show:

Lemma 11. Let σs denote the L-least strategy for Player II in G(W∞, s). Then,

(1) for each s 6∈W∞, if σs exists, then it belongs to Lδ,
(2) the predicate s 6∈W∞ ∧ x = σs is ∆1 over Lδ.

Granted the lemma, Theorem 5 follows: Player II chooses her moves for the
game A following the procedure of Claim 10. Such strategies always appear in Lδ
and determining whether an element of Lδ is the strategy is ∆1, so the procedure
is ∆1 over Lδ. The proof of the lemma appears on p. 8.

Remark 12. In general, if A is a countable admissible set, then the aΣ0
1-definable

relations over A are those that are Σ1-definable over the next admissible set (see
Barwise-Gandy-Moschovakis [6]). A consequence of this is that winning strategies
for games which are recursive relative to W∞ appear arbitrarily close to the next
admissible. It is perhaps surprising that a bound such as the one given by Lemma
11 is possible.

We need to analyze how strategies for G(W∞, s) are constructed. These are Π0
1

games with respect to the parameter W∞; from the perspective of Player II, these
are Σ0

1 games with respect to W∞. Thus, we consider Σ0
1 games now.

2.3. Σ0
1 games. Let us briefly recall how strategies for Σ0

1 games are constructed.
Consider a Σ0

1 set B, say

(2.1) x ∈ B ↔ ∃nS(x � n,X)

for some recursive relation S and some parameter X ⊂ N. We define an operator
Y 7→ ψ(Y ) by

ψ(Y ) = {s : ∃n < lth(s)S(s � n,X) ∨ ∃k ∀l s_k_l ∈ Y }.

Letting V α denote the αth stage of this inductive definition, we have:

Claim 13. Player I has a winning strategy for GB from the position s if and only
if s ∈ V∞, in which case s ∈ V α for some α < ωX1 and such a strategy is definable
over Lα[X].
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Proof. By induction, similarly to the corresponding claims for Σ0
2 games. Since ψ is

a positive X-arithmetical operator, its closure ordinal is at most ωX1 , which implies
the second part of the claim. �

Given a set X, a Σ0
1(X) set B = B(X), and a sequence s let us say that an

ordinal α is good for X and s if α is the least ordinal such that s is seen to belong
to the set of winning positions for Player I in the game GB after α steps of the
inductive definition. Using the notation above, this is the least α such that s ∈ V α.
Below, we assume B is a set given by a formula of the form ∃nS(x � n,X) as in
(2.1). Thus, we have:

Claim 14. The following are equivalent:

(1) Player I has a winning strategy for GB from s;
(2) there there is some α < ωX1 which is good for X and s;
(3) for every admissible set M containing X there is some α ∈ M such that

M |= “α is good for X and s.”

If so, then Player I has a winning strategy for GB from s in any admissible set
containing X.

Proof. By Claim 13, Player I has a winning strategy for GB from s if and only
if there there is some α < ωX1 which is good for X and s, in which case she has
a strategy in Lα[X]. The result follows from the fact that every admissible set
containing X contains every element of LωX1 [X]. �

2.4. Bounding strategies for G(W∞, s).

Claim 15. Suppose s has even length and s 6∈ W∞. For each γ, Player II has a
winning strategy for G(W<γ , s).

Proof. Otherwise, Player I has a winning strategy for G(W<γ , s) and hence s ∈
W γ ⊂W∞. �

Claim 16. W<γ is Σ1-definable over LωCKγ , uniformly.

Proof. This is proved by induction, using the fact that φ is Σ1
1, and so Wα is

Π1-definable over LωW<α
1

[W<α], uniformly. �

Claim 17. Suppose s has even length and s 6∈W∞. Then, for each γ, there is an
ordinal α which is good for W<γ and s and moreover α belongs to any admissible
set containing W<γ .

Proof. Immediate from Claim 14 and Claim 15. �

Let us define a function f by

f(γ, s) =

{
least α which is good for W<γ and s, if γ = ωCKγ
0 otherwise.

Claim 18. Suppose s has even length and s 6∈W∞. Then the function

γ 7→ f(γ, s)

is total and uniformly Σ1-definable over all admissible sets.

Proof. This is immediate from Claim 16 and Claim 17. �

The following claim is the crucial step in the proof.
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Claim 19. Suppose s has even length and s 6∈W∞. Then, f(σ, s) < δ.

Proof. Suppose otherwise that δ ≤ f(σ, s). Let θ be the second-order sentence in
the language of set theory which over Lσ asserts the existence of a model (M,∈M )
of KP satisfying V = L and such that

(1) M end-extends Lσ+1,
(2) M |= “δ ≤ f(σ).”

This is a Σ1
1 sentence and by hypothesis we have Lσ |= θ. By Σ1

1-reflection, there
is some σ̄ < σ such that Lσ̄ |= θ. Hence, there is a model M̄ of KP satisfying V = L
and such that

(1) M̄ end-extends Lσ̄+1,

(2) M̄ |= “δM̄σ̄ ≤ f(σ̄).”

By Ville’s lemma (see Barwise [5]), any model of KP which end-extends Lσ̄+1 must
end-extend Lσ̄+ . By a theorem of Gostanian [11], if α < σ, then δα = α+, and thus

δσ̄ = σ̄+.

By Claim 18, f(σ̄) < σ̄+ and so it belongs to the wellfounded part of M̄ . However,

this means that δM̄σ̄ belongs to the wellfounded part of M̄ and thus

δM̄σ̄ ≤ f(σ̄) < σ̄+,

which is impossible, since M̄ contains Lσ̄+1 and thus it contains all true σ̄-recursive
wellorderings of σ̄. �

We can now prove Lemma 11. By Claim 19, f(σ, s) < δ for each s of even
length with s 6∈ W∞. Since for each s of even length there is at most one ordinal
which is good for W∞ and s, and whether such an ordinal exists depends only on
whether s ∈ W∞, we obtain both clauses of Lemma 11. This completes the proof
of the lemma and thus of the upper bound.

We mention that the key fact of σ we used was that δ, albeit inadmissible, satisfies
certain closure properties. Claim 19, together with Van de Wiele’s theorem [22] (see
also Sacks [20]) shows, by the argument of Claim 19, that if ρ is a Σ1

1-reflecting
ordinal and f is a total set-recursive function on the ordinals, then

f(ρ) < δρ.

3. Proof of Theorem 7

We have seen that, for any Σ0
2 game, if Player I has a winning strategy then there

is one in Lσ, else Player II has one ∆1 definable over Lδ. Solovay showed that σ
is the optimal bound for strategies for Player I. Since σ is recursively inaccessible,
these strategies can be assumed to be witnessed. Similarly, the strategies for Player
II we constructed are witnessed:

Lemma 20. The strategies τ for Player II constructed in §2 can be extended to
witnessed winning strategies (τ, φ, p), where p is definable over Lδ.

Proof. To have a witnessed winning strategy, we need among other things a formula
φ(x, y) which correctly tells us whether y is a winning strategy. We gave an example
of such a φ right after Definition 6. But that φ will not be adequate here, because
we have little control over where the witnesses for this φ show up. On general
principles we know that witnesses appear by the next admissible ordinal σ+, but
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we want them earlier, namely definable over Lδ. That is, we need to choose φ so
that the constructions from §2 which we used to define τ suffice as a witness p for
the witnessed winning strategy.

Let’s briefly review what these constructions are. In a Σ0
2 game, Player II is in

the position of playing an ω-sequence GnA of open games. The argument that a
node s was winning for II in one of those games went by assigning ordinal ranks
f(σ, s) to s and certain of its extensions. Moreover, we showed that each f(σ, s) is
less than δ, and the inductive definition of f was simple, so that the calculation of
f(σ, s) is given by a construction in Lδ. We want to take this construction to be
a witness that τ starting from s is winning in GnA. Furthermore, we want to take
as a witness that τ is winning the set of all such constructions for all s 6∈W∞ and
each GnA.

Therefore, we take ∃xφ(x, y) as a formalization of the following: there is a
transitive set Lδ̄ which is a standard model of “V = L”, and which has as a
member a standard model Lσ̄ of KPi, and also has a Σ1

1-inductive construction
{Wα}α of winning nodes for Player I indexed by the ordinals of Lσ̄, and for each
s 6∈ W∞ := W<σ̄ there is an ordinal ranking function in Lδ̄ witnessing that s is a
win for II in G(W∞, s), and y is the induced strategy. �

To complete the proof, let us show that the bound δ is optimal, i.e., that there
is a Σ0

2 game with no witnessed winning strategy in Lδ. This is an immediate
consequence of Solovay’s bound together with the following observation:

Lemma 21. Suppose that (τ, φ, p) ∈ Lδ is a witnessed winning strategy for a Σ0
2

game defined by ψ. Then, there is a witnessed winning strategy (τ̄ , φ, p̄) for the
same game in Lσ.

Proof. By [2, Proposition 15], we have Lσ ≺Σ1 Lδ, so if (τ, φ, p) ∈ Lδ were as in
the statement of the lemma, we would have Lσ |= ∃x∃y φ(x, y). Letting τ̄ , p̄ ∈ Lσ
be so that Lσ |= φ(p̄, τ̄), then (τ̄ , φ, p̄) are as desired. �

This completes the proof of Theorem 7. Let us finish with the observation that
the restriction to witnessed winning strategies is crucial for Lemma 21.

Proposition 22 (Tanaka [21]). There is a Σ0
2 game for which Player II has a

winning strategy in Lσ+1 but not one in Lσ.

Tanaka’s example is essentially that Player II must play something that looks like
a complete Σ1

1 inductive set. We have chosen to give an example which is similar
but not identical; namely, Player II must play a model of “V = Lσ”. Tanaka’s
priority notwithstanding, we are doing this for the following reasons. To help keep
this paper self-contained, we would want to give the details of the construction. If
we’re going to give the details anyway, we may as well give a variant of the game,
in case having this alternative in the literature turns out to be useful some day.
Finally, we find it more intuitive, more natural, to think in terms of building models
of initial segments of L; it also generalizes more readily to other settings, like other
complexity classes.

Proof. Consider the game in which, to be brief, II must play a (term) model (ω-
standard) of “V = Lσ, ” and I’s goal is to show that it is not the correct model.

The requirements on Player II: II must ultimately produce a term model
M of “V = L, KPi, and σ does not exist,” and the full Σ1 theory of M (which
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we take to include the true Π1 statements too). The rules can enforce that M
be ω-standard by, say, forcing that ωM consist of the evens in their natural order.
The particular syntax that II has to use to name sets does not matter, so we will
describe only how the (transfinite) ordinals are to be named. If an ordinal α is
neither admissible nor a limit of admissibles, then let β be the supremum of the
admissibles less than α. Notice that by assumption β < α < β+. In this case, α
is the order-type of a β-recursive ordering. (As a reminder, this is not true for all
ordinals α: namely, the supremum of the admissibles less than δ is σ, but there is
no σ-recursive ordering of type δ. The point here is that δ and σ form the least
such counter-example, so there can be no such example in a structure purported
to model V = Lσ.) Then the definition of this ordering, along with β, serves as a
name for α. The other case is that α is either admissible or a limit of admissibles.
Since II is to build a model in which α < σ, α is not Σ1

1 reflecting. Then the Σ1
1

assertion which does not reflect can be taken as the name of α.
The other requirement of II is that I is allowed to ask a question of II during I’s

play of the game, a question of the form “is this particular sentence true in M ,”
and II must answer that question promptly. We cannot allow that I win the game
by constantly asking II questions, so that II never gets to build their model, so
II may interleave steps in building the model with steps answering I’s questions.
For instance, we could require II to build M at the even steps and to answer I’s
questions, in the order in which they were posed, at the odd. Furthermore, M must
be consistent with their answers to I’s questions. That is, II’s answers can be taken
to be part of the diagram of M .

The requirements on Player I: It is I’s task to show, if possible, that II’s
model is not the right one. It will be clear that II can win this game by telling the
truth, playing the Σ1 theory of the true Lσ. This strategy for II is ∆2 definable over
Lσ. The role of I is to keep II honest, so that this is effectively II’s best strategy,
thereby preventing a winning strategy from showing up before σ.

To describe the rules for Player I, let’s think through how they can strategize.
They can assume that M will be a model of “V = L” regardless of what they do
(because, if not, I wins automatically). For sure M depends on what I does, but I
can still examine what the options are for what M will ultimately be. What I does
depends very much on the ordinal standard part of M , osp M . Note that M could
be either standard or non-standard; if the former, then osp M is just the ordinal
height of M .

Case I: osp M > σ: Since osp M is an admissible ordinal, M would contain
all of Lσ+ , and therefore not model “σ does not exist”, leading I to win the game
automatically.

Case II: osp M = σ: If M is standard, i.e. M = Lσ, then II wins and there
is nothing I can do. As it turns out, there will be ways for II to win by playing
non-standard models with osp σ, as we will see later. Although this is not the
intent of the game, this actually will not bother us, because II still needs access to
Lσ to play such a strategy.

Case III: osp M < σ: By way of notation, let osp M be α. Then I can demon-
strate that M is not Lσ by playing Lα+ , noting that Lα is an initial segment of M
but not a member of M , and witnessing that α < σ by producing a Σ1

1 statement ψ
which is true of Lα, as witnessed definably over Lα+ , yet does not reflect. Player I is
to build a model using the same naming conventions as Player II. To build a model
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of “V = Lα+ for some α” is straightforward, as is witnessing α < σ by checking
that ψ works as described. To show that Lα is an initial segment of M , every time
I makes a ∆0 statement about Lα they are to ask II whether that statement is true
of M . Showing that Lα is not a member of M breaks up into several cases.

Subcase a): ψ does not name an ordinal in M . I can demonstrate that this is
so by asking II whether ψ names an ordinal in M and receiving the answer “no”.
Note that this includes the case when M is standard, i.e. for M = Lα.

Subcase b): ψ does name an ordinal in M , and α is not recursively inaccessible.
The challenge here is that there is a least non-standard admissible ordinal, and
that ordinal could be named by ψ. That makes M look a lot like the standard
universe. But in this case, α = β+ for some β which is either admissible or a
limit of admissibles. Then some β-recursive ordering will represent a non-standard
ordinal. Player I could win by witnessing that M is non-standard by listing an
infinite descending sequence through this ordering.

Subcase c): ψ does name an ordinal in M , and α is recursively inaccessible.
Then there will be no least non-standard admissible ordinal. (If γ were the least
non-standard admissible ordinal, then the supremum of the admissible ordinals less
than γ would define α in M .) Let β be the M -ordinal named by ψ, which must
be non-standard. Then let χ be a Σ1

1 statement naming a non-standard admissible
ordinal less than β. In the real universe V , χ does not name any ordinal less than
α. Hence I can witness that Lα is not in M by noting that in I’s model ψ names
α and χ names nothing less than α, and that in M ψ names β and χ names an
ordinal less than β.

By way of enabling I to do this kind of witnessing regarding M , the rules for I
are as follows. Identify ω with ω×ω. On I’s nth turn, where n = 〈i, j〉, I makes the
jth move on the ith slice of ω. At the beginning of a slice, I must announce either
that they are building an infinite descending sequence through a linear order given
by a ∆1 definition ψ over an ordinal β, or they are building a model of V = Lα+

in which some Σ1
1 formula ψ names α. In the former case, on the 2jth move of the

slice (j > 0), I must play an ordinal βj < β, and on the 2j + 1th move I must ask
II whether βj <ψ βj−1. In the latter case, on the even moves I must build their
model according to some fixed scheme, like on the 2jth move I must decide on the
statement (with parameters) coded by j, so that I cannot indefinitely postpone a
decision, and on the odd moves I must ask II whether the last ∆0 statement I made
about Lα is true in M .

The complexity of the game: Player I wins if there is a slice on which one
of two things happens. One possibility is that I has announced that this slice is
an infinite descending sequence, and there is a step by which II has stated that
β as named by I is indeed an ordinal and the β-recursive ordering named by ψ
also gives an ordinal, and every time I has asked II whether βj <ψ βj−1 II has
said yes. The other possibility is that I has announced they are building a model
of V = Lα+ , where ψ names α, and there is a step by which II has said ψ does
not name an ordinal, or II has said some χ names an ordinal less than ψ’s and I
has said there is no ordinal less than ψ’s named by χ, and every time I has asked
II whether an assertion is true of M , II has answered yes. It is easy to see these
winnings conditions are Σ0

2.
How Player II can win: If I wins a play of the game the first way, then I

has built an infinite descending sequence through II’s ordinals, witnessing that M
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is ill-founded. If I wins a play the second way, then I has determined an initial
segment Lα of M such that α itself is not in M ; if α is a standard ordinal then I’s
model witnesses that α < σ, and if α is non-standard then, since Lα is an initial
segment of M , M is non-standard. It follows directly that II can prevent I from
winning by playing the true Lσ; in other words, this is a winning strategy for II,
and easily seen to be ∆2 definable over Lσ. (It also follows easily that the only way
II can win is by playing a model with ordinal standard part σ. We describe below
why there are winning strategies for II which play non-standard models.)

All we have left to show is that II has no winning strategy in Lσ. Suppose II
plays with a strategy τ ∈ Lσ. It will suffice to show how I can win.

Let γ < σ be the supremum of the admissible ordinals which are at most the
L-rank of τ . Note that γ is either admissible or a limit of admissibles, and that
τ ∈ Lγ+ . If in response to player I doing nothing, τ would do anything other than
play the Σ1 theory of a model of V = L + KPi then I can win by doing nothing.
So we can now assume that τ plays such a model N when I does nothing. (Note
that N is fixed, as opposed to M , which could depend on I’s moves.) For reasons
of complexity, N ∈ Lγ+ . Hence osp N ≤ γ. Let φ name osp N . As described
above, either φ does not name any ordinal in N , or there is a χ which names an
ordinal smaller than the ordinal named by φ in N (even though in the real world
χ does not name any ordinal smaller than osp N). Each of those possibilities is in
the Σ1 theory II is playing, so II must assert one at some point. When they do so,
this then constrains any model II ultimately builds to have ordinal standard part
at most osp N , even if M 6= N .

At this point, Player I can win, as follows. For each admissible or limit thereof
β < osp N , and each β-recursive ill-founded linear order ψ, I lists an infinite
descending sequence through ψ on one of the slices of ω (on the even moves, to
be precise, and on the odd moves asks II whether each entry on the sequence is
correct). Also, for each admissible or limit thereof β ≤ γ, and name ψ of β, and
optionally each Σ1

1(Lβ) statement χ which names nothing in Lβ , on some slice of
ω I acts as though β is the ordinal standard part of M , as follows. On the even
moves, I plays Lβ+ , and asserts that, in M , either ψ names nothing or χ names
an ordinal smaller than ψ’s. On the odd moves, I checks out that Lβ is indeed an
initial segment of M by asking II all possible ∆0 questions about it. Since II is
constrained to play a model with ordinal standard part at most osp N , one of I’s
attempts (i.e. one of the slices of ω) must succeed. �

We mentioned that Player II has a winning strategy which plays a non-standard
model. That can be seen as follows. Consider a variant of this game in which II must
play a model of V = Lσ+ . II has a winning strategy: tell the truth. Hence II has a
winning strategy definable over Lδ. But this strategy cannot tell the truth! (Lest
reals of L-rank greater than δ end up definable over Lδ.) Therefore the restriction of
this strategy to play only the Σ1 theory of (its version of) Lσ is a winning strategy
for the original game. This sets the stage for several questions. For instance, for
the game of Proposition 22, “play the true Lσ” is a winning strategy for Player
II. Is that the L-least winning strategy? The strategy of playing the true Lσ is
∆2; is there a winning strategy of less definitional complexity? Perhaps there are
Barwise-style model-theoretic methods which need only a Π1 consistency check to
succeed.
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Note that, the way this game was set up, II has a sure win by playing any model
of the theory with ordinal standard part σ. This includes playing a fixed such
model, of which some are definable over Lσ. Consider in contrast the variant of the
game in which we give Player I an additional tool, namely to win by listing any
infinite descending sequence through II’s ordinals. Then II could not guarantee a
win by playing any fixed model. One could then ask the same questions as above
about this variant. Moreover, it’s not even obvious whether there are any winning
strategies in all of Lδ other than playing the true Lσ. Are there any other winning
conditions we could reasonably give to Player I?

The example above is of a game with least winning strategy definable over, but
not in, Lσ, even though on general principles any witness that it’s winning is at
best definable over Lδ, so we have:

Question 23. Does every Σ0
2 game have a winning strategy in Lδ?

One of the authors conjectures the answer goes is “yes,” and the other that it is
“no.” A more general question is: for which α is it the case that a winning strategy
for a Σ0

2 game is first definable over Lα?
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