Steiner k-Skolem labeled graphs

Josiah Reiswig*, Anderson University (SC)

A Skolem labeled graph is a graph G = (V, E) admitting a vertex labeling onto the set $L = \{1, 2, ..., n\}$ satisfying:

- 1. for each $\ell \in L$, exactly two vertices in V which receive label ℓ , and
- 2. if u and v receive label $\ell \in L$, then $d(u, v) = \ell$.

As an extension, we define a Steiner k-Skolem labeled graph to be a graph G = (V, E) admitting a vertex labeling onto the set $L = \{k - 1, k, \dots, k + n - 2\}$ satisfying:

- 1. for each $\ell \in L$, exactly k vertices in V which receive label ℓ , and
- 2. if S_{ℓ} is the set of vertices which receive label $\ell \in L$, then $d(S_{\ell}) = \ell$, where d is the graph Steiner distance.

Both definitions can be reformulated into strong and weak versions. For $k \geq 3$, we show that paths and cycles of a certain minimum length admit a strong Steiner k-Skolem labeling and that $n \times k$ grid graphs admit weak Steiner k-Skolem labelings. For $k \geq 4$, we prove that every connected graph G = (V, E) is an induced subgraph of a Steiner k-Skolem labeled graph of order at most k|E|.

Keywords: Steiner, Skolem, graph labeling