Preservation of the \mathbb{Z}_k -antimagic Property of a Graph under Edge Addition

Richard M. Low*, San Jose State University

Let G = (V(G), E(G)) be a simple graph. Then, G is \mathbb{Z}_k -antimagic if there exists an edge labeling $f : E(G) \to \mathbb{Z}_k \setminus \{0\}$ such that the induced vertex labeling $f^+ : V(G) \to \mathbb{Z}_k$ (where $f^+(v) = \sum_{uv \in E(G)} f(uv)$, (mod k)) is injective. The integer-antimagic spectrum of G is the set IAM $(G) = \{k : G \text{ is } \mathbb{Z}_k\text{-antimagic and } k \geq 2\}$. We prove that IAM $(G) \subseteq \text{IAM}(G^*)$, where G^* is any graph obtained by adding simple edges to G. Furthermore, if G is disconnected and the added edges do not create a new K_3 -component in G^* , then IAM $(G) \subseteq \text{IAM}(G^*)$.

This is joint work with Uğur Odabaşı and Dan Roberts.

Key words: integer-antimagic labeling