On disjunction convex hulls by lifting

Yushan Qu, Jon Lee*, University of Michigan

We study the natural extended-variable formulation for the disjunction of n + 1 polytopes in \mathbb{R}^d . We demonstrate that the convex hull \mathcal{D} in the natural extended-variable space \mathbb{R}^{d+n} is given by full optimal big-M lifting (i) when $d \leq 2$ (and that it is not generally true for $d \geq 3$), and also (ii) under some technical conditions, when the polytopes have a common facet-describing constraint matrix, for arbitrary $d \geq 1$ and $n \geq 1$. We give a broad family of examples with $d \geq 3$ and n = 1, where the convex hull is not described after employing all full optimal big-M lifting inequalities, but it is described after one round of MIR inequalities. Additionally, we give some general results on the polyhedral structure of \mathcal{D} , and we demonstrate that all facets of \mathcal{D} can be enumerated in polynomial time when dis fixed.

Keywords: mixed-integer optimization, disjunction, polytope