Full *H*-colourings

César Hernández Cruz, Universidad Nacional Autónoma de México

Given two graphs G and H, a full homomorphism from G to H, also called a full H-colouring of G, is a function $\varphi: V_G \to V_H$ such that $uv \in E_G$ if and only if $\varphi(u)\varphi(v) \in E_H$. If a full H-colouring exists for a graph G we say that G is fully H-colourable. It is easy to verify that the family of fully H-colourable graphs is hereditary, and hence, it can be characterized by a set of forbidden induced subgraphs. It is known that for any fixed H, the number of forbidden induced subgraphs characterizing fully H-colourable graphs is finite. Thus, for a fixed H, the class of fully H-colourable graphs is polynomial-time recognizable.

For a family \mathcal{H} of graphs we say that a graph G is *fully* \mathcal{H} -colourable if there is a fully Hcolouring of G for some $H \in \mathcal{H}$. A cardinality argument easily shows that there are choices of \mathcal{H} such that the recognition of fully \mathcal{H} -colourable graphs is not decidable. In this talk we will discuss some choices of \mathcal{H} having nice forbidden induced subgraph characterizations, in some cases even yielding linear time recognition algorithms for fully \mathcal{H} -colourable graphs. This is a joint work with Pavol Hell and Seyyed Aliasghar Hosseini.

Keywords: full homomorphism, full *H*-colouring, hereditary class