Hiram H. López, Felice Manganiello, Gretchen Matthews

Clemson University

The Sixth Code-Based Cryptography Workshop April 5-6, 2018 Florida Atlantic University Davie, Florida.

Let $K := \mathbb{F}_q$ be a finite field and $n \in \mathbb{Z}^+$.

An [n, k, d] code C over K is a k-dimensional subspace of K^n with

$$d = \min\{ |\{i : c_i \neq c_i'\}| : c, c' \in C, c \neq c'\}.$$

Elements of C are called codewords; d is the minimum distance of C.

Let $K := \mathbb{F}_q$ be a finite field and $n \in \mathbb{Z}^+$.

An [n, k, d] code C over K is a k-dimensional subspace of K^n with

$$d = \min\{ |\{i : c_i \neq c_i'\}| : c, c' \in C, c \neq c'\}.$$

Elements of C are called codewords; d is the minimum distance of C.

The dual of C is

$$C^{\perp} := \{ w \in K^n : w \cdot c = 0 \ \forall c \in C \}.$$

A generator matrix for C is a matrix $G \in K^{k \times n}$ whose rows form a basis for C.

Let $K := \mathbb{F}_q$ be a finite field and $n \in \mathbb{Z}^+$.

An [n, k, d] code C over K is a k-dimensional subspace of K^n with

$$d = \min\{ |\{i : c_i \neq c_i'\}| : c, c' \in C, c \neq c'\}.$$

Elements of C are called codewords; d is the minimum distance of C.

The dual of C is

$$C^{\perp} := \{ w \in K^n : w \cdot c = 0 \ \forall c \in C \}.$$

A generator matrix for C is a matrix $G \in K^{k \times n}$ whose rows form a basis for C.

A parity-check matrix for C is a matrix $H \in K^{(n-k)\times n}$ such that for all $c \in C$,

$$Hc^T=0.$$

Let $K := \mathbb{F}_q$ be a finite field and $n \in \mathbb{Z}^+$.

An [n, k, d] code C over K is a k-dimensional subspace of K^n with

$$d = \min\{ |\{i : c_i \neq c_i'\}| : c, c' \in C, c \neq c'\}.$$

Elements of C are called codewords; d is the minimum distance of C.

The dual of C is

$$C^{\perp} := \{ w \in K^n : w \cdot c = 0 \ \forall c \in C \}.$$

A generator matrix for C is a matrix $G \in K^{k \times n}$ whose rows form a basis for C.

A parity-check matrix for C is a matrix $H \in K^{(n-k)\times n}$ such that for all $c \in C$,

$$Hc^T=0.$$

Note that $GH^T = 0$.

4 D > 4 A P > 4 B > 4 B > 90

Linear complementary dual (LCD) codes

A linear code C is a linear complementary dual code if and only if

$$C\cap C^{\perp}=\{0\}.$$

Linear complementary dual (LCD) codes

A linear code C is a linear complementary dual code if and only if

$$C\cap C^{\perp}=\{0\}.$$

If $C \subseteq K^n$ is an LCD code, then

$$C \oplus C^{\perp} = K^n$$
.

Linear complementary dual (LCD) codes

A linear code C is a linear complementary dual code if and only if

$$C\cap C^{\perp}=\{0\}.$$

If $C \subseteq K^n$ is an LCD code, then

$$C \oplus C^{\perp} = K^n$$
.

Proposition (Massey, 1992)

If C is a code with generator matrix G and parity-check matrix H, then the following are equivalent:

- C is LCD.
- \bigcirc GG^T is nonsingular.
- \bullet HH^T is nonsingular.

Good LCD codes can provide countermeasures to side-channel attacks (SCAs).

Assume C is an LCD with generator matrix G and parity-check matrix H. Suppose z is a masked element.

Since
$$C \oplus C^{\perp} = K^n$$
, $\exists (x,y) \in K^k \times K^{n-k}$ with

$$z = xG + yH$$
.

Then

$$zG^{T}(GG^{T})^{-1} = xGG^{T}(GG^{T})^{-1} + \underbrace{yHG^{T}(GG^{T})^{-1}}_{0} = x.$$

and

$$zH^{T}(HH^{T})^{-1} = \underbrace{xGH^{T}(HH^{T})^{-1}}_{0} + yHH^{T}(HH^{T})^{-1} = y.$$

According to Carlet and Guilley (2015), the countermeasure is $(d-1)^{th}$ degree secure where d is the minimum distance of C, and the greater the degree of the countermeasure, the harder it is to pass a successful SCA.

Good LCD codes can provide countermeasures to fault-injection attacks.

Suppose z is modified into $z + \epsilon$ where $\epsilon \in K^n$.

Then $\epsilon = eG + fH$ for some $(e, f) \in K^k \times K^{n-k}$.

Detection amounts to distinguishing z from $z + \epsilon$.

We have that

$$z + \epsilon = (x + e)G + (y + f)H.$$

Then

$$(z+\epsilon)H^{T}(HH^{T})^{-1} = (x+e)GH^{T}(HH^{T})^{-1} + (y+f)HH^{T}(HH^{T})^{-1} = y+f.$$

Notice that $z + \epsilon = y$ if and only if f = 0 if and only if $\epsilon \in C$.

Thus, fault not detected if $\epsilon \in C$.

If $wt(\epsilon) < d(C)$, then fault is detected.

This demonstrates why we want d(C) large.

Affine Cartesian codes.

Let A_1, \ldots, A_m be a collection of non-empty subsets of K. Define the Cartesian product set

$$\mathcal{A}:=A_1\times\cdots\times A_m\subset K^m.$$

Affine Cartesian codes.

Let A_1, \ldots, A_m be a collection of non-empty subsets of K. Define the Cartesian product set

$$A := A_1 \times \cdots \times A_m \subset K^m$$
.

Assume $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$. Take and fix n non-zero elements $v_{\mathbf{a}_1}, \dots, v_{\mathbf{a}_n}$ of the field K and define $\mathbf{v} := (v_{\mathbf{a}_1}, \dots, v_{\mathbf{a}_n})$.

The evaluation map

$$\operatorname{ev}_k : K[X_1, \dots, X_m]_{< k} \longrightarrow K^{|\mathcal{A}|},$$

 $f \mapsto (v_{\mathbf{a}_1} f(\mathbf{a}_1), \dots, v_{\mathbf{a}_n} f(\mathbf{a}_n)),$

defines a linear map of K-vector spaces. The image of ev_k , denoted by $C_k(\mathcal{A}, \mathbf{v})$, defines a linear code.

Affine Cartesian codes.

Let A_1, \ldots, A_m be a collection of non-empty subsets of K. Define the Cartesian product set

$$A := A_1 \times \cdots \times A_m \subset K^m$$
.

Assume $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$. Take and fix n non-zero elements $v_{\mathbf{a}_1}, \dots, v_{\mathbf{a}_n}$ of the field K and define $\mathbf{v} := (v_{\mathbf{a}_1}, \dots, v_{\mathbf{a}_n})$.

The evaluation map

$$\operatorname{ev}_k \colon K[X_1, \dots, X_m]_{< k} \longrightarrow K^{|\mathcal{A}|},$$

 $f \mapsto (v_{a_1} f(a_1), \dots, v_{a_n} f(a_n)),$

defines a linear map of K-vector spaces. The image of ev_k , denoted by $C_k(A, \mathbf{v})$, defines a linear code.

Definition

We call $C_k(A, \mathbf{v})$ the generalized affine Cartesian evaluation code (Cartesian code for short) of degree k associated to A and \mathbf{v} .

We will focus on the case when $A = A_1 := \{a_1, \ldots, a_n\}$. Observe that in this case the Cartesian code $C_k(A_1, \mathbf{v})$ is the *generalized Reed-Solomon code* of length n and dimension k.

We will focus on the case when $\mathcal{A} = A_1 := \{a_1, \dots, a_n\}$. Observe that in this case the Cartesian code $C_k(A_1, \mathbf{v})$ is the *generalized Reed-Solomon code* of length n and dimension k. Define the following polynomials:

$$L_1(X_1) := \prod_{a \in A_1} (X_1 - a).$$

We will focus on the case when $\mathcal{A}=A_1:=\{a_1,\ldots,a_n\}$. Observe that in this case the Cartesian code $C_k(A_1,\mathbf{v})$ is the *generalized Reed-Solomon code* of length n and dimension k. Define the following polynomials:

$$L_1(X_1) := \prod_{a \in A_1} (X_1 - a).$$

 $L'_1(X_1)$ denotes the formal derivative of $L_1(X_1)$.

We will focus on the case when $A = A_1 := \{a_1, \dots, a_n\}$.

Observe that in this case the Cartesian code $C_k(A_1, \mathbf{v})$ is the *generalized Reed-Solomon code* of length n and dimension k. Define the following polynomials:

$$L_1(X_1) := \prod_{a \in A_1} (X_1 - a).$$

 $L_1'(X_1)$ denotes the formal derivative of $L_1(X_1)$. For each element $a \in A_1$,

$$L_a(X_1) := \frac{L_1(X_1)}{(X_1 - a)}.$$

Then

$$L_a(a) = L'_1(a).$$

An element of the code $C_k(A_1, \mathbf{v})$ is of the form

$$(v_{a_1}f(a_1),\ldots,v_{a_n}f(a_n)),$$

where $f(X_1) \in K[X_1]$, $\deg f(X_1) < k$.

An element of the code $C_k(A_1, \mathbf{v})$ is of the form

$$(v_{a_1}f(a_1),\ldots,v_{a_n}f(a_n)),$$

where $f(X_1) \in K[X_1], \deg f(X_1) < k$.

An element of the dual is of the form

$$\left(\frac{g(a_1)}{v_{a_1}L_{a_1}(a_1)},\ldots,\frac{g(a_n)}{v_{a_n}L_{a_n}(a_n)}\right),$$

where $g(X_1) \in K[X_1], \deg g(X_1) < n - k$.

An element of the code $C_k(A_1, \mathbf{v})$ is of the form

$$(v_{a_1}f(a_1),\ldots,v_{a_n}f(a_n)),$$

where $f(X_1) \in K[X_1], \deg f(X_1) < k$.

An element of the dual is of the form

$$\left(\frac{g(a_1)}{v_{a_1}L_{a_1}(a_1)},\ldots,\frac{g(a_n)}{v_{a_n}L_{a_n}(a_n)}\right),$$

where $g(X_1) \in K[X_1]$, $\deg g(X_1) < n - k$.

We are interested in finding conditions over A_1 and \mathbf{v} such that $C_k(A_1, \mathbf{v})$ is LCD.

Observe that the Cartesian code $C_k(A_1, \mathbf{v})$ is not LCD if and only if there are polynomials $f(X_1)$ and $g(X_1)$ such that $\deg(f) < k$, $\deg(g) < n - k$ and

$$(v_{a_1}f(a_1),\ldots,v_{a_n}f(a_n))=\left(\frac{g(a_1)}{v_{a_1}L_{a_1}(a_1)},\ldots,\frac{g(a_n)}{v_{a_n}L_{a_n}(a_n)}\right).$$
(1)

Observe that the Cartesian code $C_k(A_1, \mathbf{v})$ is not LCD if and only if there are polynomials $f(X_1)$ and $g(X_1)$ such that $\deg(f) < k$, $\deg(g) < n - k$ and

$$(v_{a_1}f(a_1),\ldots,v_{a_n}f(a_n))=\left(\frac{g(a_1)}{v_{a_1}L_{a_1}(a_1)},\ldots,\frac{g(a_n)}{v_{a_n}L_{a_n}(a_n)}\right).$$
 (1)

Equation (1) holds if and only if

$$v_{a_i}^2 L_1'(a_i) f(a_i) = g(a_i), \quad \text{ for all } i \in [n].$$
 (2)

Observe that the Cartesian code $C_k(A_1, \mathbf{v})$ is not LCD if and only if there are polynomials $f(X_1)$ and $g(X_1)$ such that $\deg(f) < k$, $\deg(g) < n - k$ and

$$(v_{a_1}f(a_1),\ldots,v_{a_n}f(a_n))=\left(\frac{g(a_1)}{v_{a_1}L_{a_1}(a_1)},\ldots,\frac{g(a_n)}{v_{a_n}L_{a_n}(a_n)}\right).$$
 (1)

Equation (1) holds if and only if

$$v_{a_i}^2 L_1'(a_i) f(a_i) = g(a_i), \quad \text{for all } i \in [n].$$

Lemma

 $H_1(X_1) := \sum_{a \in A_1} \frac{L_a(X_1)}{L_a(a)} v_a^2 L_1'(a)$ has the following properties:

- (i) $H_1(a_i) = v_{a_i}^2 L_1'(a_i)$, for all $i \in [n]$.
- (ii) $deg(H_1) < n$.
- (iii) $H_1(X_1)$ and $L_1(X_1)$ are coprime in $K[X_1]$.

 $C_k(A_1, \mathbf{v})$ is not LCD if and only if there are polynomials $f(X_1), g(X_1)$ and $h(X_1)$ in $K[X_1]$ such that $\deg(f) < k, \deg(g) < n-k$ and

$$L_1(X_1)h(X_1) + H_1(X_1)f(X_1) = g(X_1),$$

where $H_1(X_1)$ is the polynomial associated to $C_k(A_1, \mathbf{v})$ defined on previous lemma.

 $C_k(A_1, \mathbf{v})$ is not LCD if and only if there are polynomials $f(X_1), g(X_1)$ and $h(X_1)$ in $K[X_1]$ such that $\deg(f) < k$, $\deg(g) < n - k$ and

$$L_1(X_1)h(X_1) + H_1(X_1)f(X_1) = g(X_1),$$

where $H_1(X_1)$ is the polynomial associated to $C_k(A_1, \mathbf{v})$ defined on previous lemma.

Theorem

Let $g_1(X_1), \ldots, g_{m+2}(X_1)$ be the remainders of the polynomials $L_1(X_1)$ and $H_1(X_1)$. The Cartesian code $C_k(A_1, \mathbf{v})$ is not LCD if and only if there is $i \in [m+2]$ such that

$$\deg(g_i) < n - k < \deg(g_{i-1}).$$

Let $g_1(X_1),\ldots,g_{m+2}(X_1)$ be the remainders of the polynomials $L_1(X_1)=\prod_{a_1\in A_1}(X_1-a_1)$ and $H_1(X_1):=\sum_{a\in A_1}\frac{L_a(X_1)}{L_a(a)}v_a^2L_1'(a)$. The Cartesian code $C_k(A_1, \mathbf{v})$ is LCD if and only if

$$n-k \in \{n, n-1, \ldots, \deg(g_1), \deg(g_2), \ldots, \deg(g_{m+2})\}.$$

Let $g_1(X_1),\ldots,g_{m+2}(X_1)$ be the remainders of the polynomials $L_1(X_1)=\prod_{a_1\in A_1}(X_1-a_1)$ and $H_1(X_1):=\sum_{a\in A_1}\frac{L_a(X_1)}{L_a(a)}v_a^2L_1'(a)$. The Cartesian code $C_k(A_1,\mathbf{v})$ is LCD if and only if

$$n-k \in \{n, n-1, \ldots, \deg(g_1), \deg(g_2), \ldots, \deg(g_{m+2})\}.$$

Corollary

Let $g_1(X_1), \ldots, g_{m+2}(X_1)$ be the remainders of the polynomials $L_1(X_1) = \prod_{a_1 \in A_1} (X_1 - a_1)$ and $L'_1(X_1)$, the formal derivative of $L_1(X_1)$. The Reed-Solomon code $RS_k(A_1)$ is LCD if and only if

$$n-k \in \{n, n-1, \ldots, \deg(g_1), \deg(g_2), \ldots, \deg(g_{m+2})\}.$$

Example

Let $K := \mathbb{F}_{13}$ and $A_1 := \{0, 2, 3, 5, 6, 8, 10, 11\}$. Then the degrees of the remainders are 0, 3, 4, 5, 6 and 7. Thus, the Reed-Solomon code $GRS_k(A_1, \mathbf{1})$ is LCD if and only if $k \in \{0, 1, 2, 3, 4, 5, 8\}$.

Example

Let $K:=\mathbb{F}_{13}$ and $A_1:=\{0,2,3,5,6,8,10,11\}$. Then the degrees of the remainders are 0,3,4,5,6 and 7. Thus, the Reed-Solomon code $GRS_k(A_1,\mathbf{1})$ is LCD if and only if $k\in\{0,1,2,3,4,5,8\}$.

Example

Using the same A_1 than previous example but now $K := \mathbb{F}_{17}$, we obtain that the degrees of the remainders are 0, ..., 7. Thus, the Reed-Solomon code $GRS_k(A_1, \mathbf{1})$ is always LCD. Of course $0 \le k \le 8$.

References

C. Carlet and S. Guilley, Complementary dual codes for counter- measures to side-channel attacks. In: E. R. Pinto et al. (eds.), Coding Theory and Applications, CIM Series in Mathematical Sciences, vol. 3, pp. 97-105, Springer Verlag, 2014.

J. L. Massey, Linear codes with complementary duals, Discrete Mathematics 106/107, 337-342, 1992.

Thanks for your time.