LCD codes from Cartesian codes

Hiram H. López, Felice Manganiello, Gretchen Matthews

Clemson University

The Sixth Code-Based Cryptography Workshop April 5-6, 2018
Florida Atlantic University
Davie, Florida.

Linear codes

Let $K:=\mathbb{F}_{q}$ be a finite field and $n \in \mathbb{Z}^{+}$.
An $[n, k, d]$ code C over K is a k-dimensional subspace of K^{n} with

$$
d=\min \left\{\left|\left\{i: c_{i} \neq c_{i}^{\prime}\right\}\right|: c, c^{\prime} \in C, c \neq c^{\prime}\right\} .
$$

Elements of C are called codewords; d is the minimum distance of C.

Linear codes

Let $K:=\mathbb{F}_{q}$ be a finite field and $n \in \mathbb{Z}^{+}$.
An $[n, k, d]$ code C over K is a k-dimensional subspace of K^{n} with

$$
d=\min \left\{\left|\left\{i: c_{i} \neq c_{i}^{\prime}\right\}\right|: c, c^{\prime} \in C, c \neq c^{\prime}\right\} .
$$

Elements of C are called codewords; d is the minimum distance of C.
The dual of C is

$$
C^{\perp}:=\left\{w \in K^{n}: w \cdot c=0 \forall c \in C\right\} .
$$

A generator matrix for C is a matrix $G \in K^{k \times n}$ whose rows form a basis for C.

Linear codes

Let $K:=\mathbb{F}_{q}$ be a finite field and $n \in \mathbb{Z}^{+}$.
An $[n, k, d]$ code C over K is a k-dimensional subspace of K^{n} with

$$
d=\min \left\{\left|\left\{i: c_{i} \neq c_{i}^{\prime}\right\}\right|: c, c^{\prime} \in C, c \neq c^{\prime}\right\} .
$$

Elements of C are called codewords; d is the minimum distance of C.
The dual of C is

$$
C^{\perp}:=\left\{w \in K^{n}: w \cdot c=0 \forall c \in C\right\} .
$$

A generator matrix for C is a matrix $G \in K^{k \times n}$ whose rows form a basis for C.
A parity-check matrix for C is a matrix $H \in K^{(n-k) \times n}$ such that for all $c \in C$,

$$
H c^{T}=0
$$

Linear codes

Let $K:=\mathbb{F}_{q}$ be a finite field and $n \in \mathbb{Z}^{+}$.
An $[n, k, d]$ code C over K is a k-dimensional subspace of K^{n} with

$$
d=\min \left\{\left|\left\{i: c_{i} \neq c_{i}^{\prime}\right\}\right|: c, c^{\prime} \in C, c \neq c^{\prime}\right\} .
$$

Elements of C are called codewords; d is the minimum distance of C.
The dual of C is

$$
C^{\perp}:=\left\{w \in K^{n}: w \cdot c=0 \forall c \in C\right\} .
$$

A generator matrix for C is a matrix $G \in K^{k \times n}$ whose rows form a basis for C.
A parity-check matrix for C is a matrix $H \in K^{(n-k) \times n}$ such that for all $c \in C$,

$$
H c^{T}=0
$$

Note that $G H^{T}=0$.

Linear complementary dual (LCD) codes

A linear code C is a linear complementary dual code if and only if

$$
C \cap C^{\perp}=\{0\} .
$$

Linear complementary dual (LCD) codes

A linear code C is a linear complementary dual code if and only if

$$
C \cap C^{\perp}=\{0\} .
$$

If $C \subseteq K^{n}$ is an LCD code, then

$$
C \oplus C^{\perp}=K^{n} .
$$

Linear complementary dual (LCD) codes

A linear code C is a linear complementary dual code if and only if

$$
C \cap C^{\perp}=\{0\} .
$$

If $C \subseteq K^{n}$ is an LCD code, then

$$
C \oplus C^{\perp}=K^{n}
$$

Proposition (Massey, 1992)

If C is a code with generator matrix G and parity-check matrix H, then the following are equivalent:
(1) C is LCD.
(2) $G G^{T}$ is nonsingular.
(3) $H H^{T}$ is nonsingular.

Good LCD codes can provide countermeasures to

 side-channel attacks (SCAs).Assume C is an LCD with generator matrix G and parity-check matrix H. Suppose z is a masked element.
Since $C \oplus C^{\perp}=K^{n}, \exists(x, y) \in K^{k} \times K^{n-k}$ with

$$
z=x G+y H .
$$

Then

$$
z G^{T}\left(G G^{T}\right)^{-1}=x G G^{T}\left(G G^{T}\right)^{-1}+\underbrace{y H G^{T}\left(G G^{T}\right)^{-1}}_{0}=x .
$$

and

$$
z H^{T}\left(H H^{T}\right)^{-1}=\underbrace{x G H^{T}\left(H H^{T}\right)^{-1}}_{0}+y H H^{T}\left(H H^{T}\right)^{-1}=y .
$$

According to Carlet and Guilley (2015), the countermeasure is $(d-1)^{\text {th }}$ degree secure where d is the minimum distance of C, and the greater the degree of the countermeasure, the harder it is to pass a successful SCA.

Good LCD codes can provide countermeasures to

 fault-injection attacks.Suppose z is modified into $z+\epsilon$ where $\epsilon \in K^{n}$.
Then $\epsilon=e G+f H$ for some $(e, f) \in K^{k} \times K^{n-k}$.
Detection amounts to distinguishing z from $z+\epsilon$.
We have that

$$
z+\epsilon=(x+e) G+(y+f) H .
$$

Then
$(z+\epsilon) H^{T}\left(H H^{T}\right)^{-1}=(x+e) G H^{T}\left(H H^{T}\right)^{-1}+(y+f) H H^{T}\left(H H^{T}\right)^{-1}=y+f$.
Notice that $z+\epsilon=y$ if and only if $f=0$ if and only if $\epsilon \in C$.
Thus, fault not detected if $\epsilon \in C$.
If $w t(\epsilon)<d(C)$, then fault is detected.
This demonstrates why we want $d(C)$ large.

Affine Cartesian codes.

Let A_{1}, \ldots, A_{m} be a collection of non-empty subsets of K. Define the Cartesian product set

$$
\mathcal{A}:=A_{1} \times \cdots \times A_{m} \subset K^{m} .
$$

Affine Cartesian codes.

Let A_{1}, \ldots, A_{m} be a collection of non-empty subsets of K. Define the Cartesian product set

$$
\mathcal{A}:=A_{1} \times \cdots \times A_{m} \subset K^{m} .
$$

Assume $\mathcal{A}=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$. Take and fix n non-zero elements $v_{\mathbf{a}_{1}}, \ldots, \boldsymbol{v}_{\mathbf{a}_{n}}$ of the field K and define $\boldsymbol{v}:=\left(v_{\mathbf{a}_{1}}, \ldots, v_{\mathbf{a}_{n}}\right)$.
The evaluation map

$$
\begin{aligned}
\mathrm{ev}_{k} & : K\left[X_{1}, \ldots, X_{m}\right]_{<k} \longrightarrow K^{|\mathcal{A}|}, \\
& f \mapsto\left(v_{a_{1}} f\left(\boldsymbol{a}_{1}\right), \ldots, v_{a_{n}} f\left(\boldsymbol{a}_{n}\right)\right),
\end{aligned}
$$

defines a linear map of K-vector spaces. The image of ev_{k}, denoted by $C_{k}(\mathcal{A}, \boldsymbol{v})$, defines a linear code.

Affine Cartesian codes.

Let A_{1}, \ldots, A_{m} be a collection of non-empty subsets of K. Define the Cartesian product set

$$
\mathcal{A}:=A_{1} \times \cdots \times A_{m} \subset K^{m} .
$$

Assume $\mathcal{A}=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$. Take and fix n non-zero elements $v_{\mathbf{a}_{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{a}_{n}}$ of the field K and define $\boldsymbol{v}:=\left(v_{\mathbf{a}_{1}}, \ldots, v_{\mathbf{a}_{n}}\right)$.
The evaluation map

$$
\begin{aligned}
\mathrm{ev}_{k} & : K\left[X_{1}, \ldots, X_{m}\right]_{<k} \longrightarrow K^{|\mathcal{A}|}, \\
& f \mapsto\left(v_{a_{1}} f\left(\boldsymbol{a}_{1}\right), \ldots, v_{a_{n}} f\left(\boldsymbol{a}_{n}\right)\right),
\end{aligned}
$$

defines a linear map of K-vector spaces. The image of ev_{k}, denoted by $C_{k}(\mathcal{A}, \boldsymbol{v})$, defines a linear code.

Definition

We call $C_{k}(\mathcal{A}, \boldsymbol{v})$ the generalized affine Cartesian evaluation code (Cartesian code for short) of degree k associated to \mathcal{A} and \boldsymbol{v}.

LCD codes on Cartesian codes

We will focus on the case when $\mathcal{A}=A_{1}:=\left\{a_{1}, \ldots, a_{n}\right\}$. Observe that in this case the Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is the generalized Reed-Solomon code of length n and dimension k.

LCD codes on Cartesian codes

We will focus on the case when $\mathcal{A}=A_{1}:=\left\{a_{1}, \ldots, a_{n}\right\}$. Observe that in this case the Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is the generalized Reed-Solomon code of length n and dimension k. Define the following polynomials:

$$
L_{1}\left(X_{1}\right):=\prod_{a \in A_{1}}\left(X_{1}-a\right)
$$

LCD codes on Cartesian codes

We will focus on the case when $\mathcal{A}=A_{1}:=\left\{a_{1}, \ldots, a_{n}\right\}$. Observe that in this case the Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is the generalized Reed-Solomon code of length n and dimension k. Define the following polynomials:

$$
L_{1}\left(X_{1}\right):=\prod_{a \in A_{1}}\left(X_{1}-a\right)
$$

$L_{1}^{\prime}\left(X_{1}\right)$ denotes the formal derivative of $L_{1}\left(X_{1}\right)$.

LCD codes on Cartesian codes

We will focus on the case when $\mathcal{A}=A_{1}:=\left\{a_{1}, \ldots, a_{n}\right\}$. Observe that in this case the Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is the generalized Reed-Solomon code of length n and dimension k. Define the following polynomials:

$$
L_{1}\left(X_{1}\right):=\prod_{a \in A_{1}}\left(X_{1}-a\right)
$$

$L_{1}^{\prime}\left(X_{1}\right)$ denotes the formal derivative of $L_{1}\left(X_{1}\right)$. For each element $a \in A_{1}$,

$$
L_{a}\left(X_{1}\right):=\frac{L_{1}\left(X_{1}\right)}{\left(X_{1}-a\right)}
$$

Then

$$
L_{a}(a)=L_{1}^{\prime}(a)
$$

An element of the code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is of the form

$$
\left(v_{a_{1}} f\left(a_{1}\right), \ldots, v_{a_{n}} f\left(a_{n}\right)\right),
$$

where $f\left(X_{1}\right) \in K\left[X_{1}\right], \operatorname{deg} f\left(X_{1}\right)<k$.

An element of the code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is of the form

$$
\left(v_{a_{1}} f\left(a_{1}\right), \ldots, v_{a_{n}} f\left(a_{n}\right)\right),
$$

where $f\left(X_{1}\right) \in K\left[X_{1}\right], \operatorname{deg} f\left(X_{1}\right)<k$.

An element of the dual is of the form

$$
\left(\frac{g\left(a_{1}\right)}{v_{a_{1}} L_{a_{1}}\left(a_{1}\right)}, \ldots, \frac{g\left(a_{n}\right)}{v_{a_{n}} L_{a_{n}}\left(a_{n}\right)}\right),
$$

where $g\left(X_{1}\right) \in K\left[X_{1}\right], \operatorname{deg} g\left(X_{1}\right)<n-k$.

An element of the code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is of the form

$$
\left(v_{a_{1}} f\left(a_{1}\right), \ldots, v_{a_{n}} f\left(a_{n}\right)\right),
$$

where $f\left(X_{1}\right) \in K\left[X_{1}\right], \operatorname{deg} f\left(X_{1}\right)<k$.

An element of the dual is of the form

$$
\left(\frac{g\left(a_{1}\right)}{v_{a_{1}} L_{a_{1}}\left(a_{1}\right)}, \ldots, \frac{g\left(a_{n}\right)}{v_{a_{n}} L_{a_{n}}\left(a_{n}\right)}\right),
$$

where $g\left(X_{1}\right) \in K\left[X_{1}\right], \operatorname{deg} g\left(X_{1}\right)<n-k$.
We are interested in finding conditions over A_{1} and \boldsymbol{v} such that $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is LCD .

Observe that the Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is not LCD if and only if there are polynomials $f\left(X_{1}\right)$ and $g\left(X_{1}\right)$ such that $\operatorname{deg}(f)<k, \operatorname{deg}(g)<n-k$ and

$$
\begin{equation*}
\left(v_{a_{1}} f\left(a_{1}\right), \ldots, v_{a_{n}} f\left(a_{n}\right)\right)=\left(\frac{g\left(a_{1}\right)}{v_{a_{1}} L_{a_{1}}\left(a_{1}\right)}, \ldots, \frac{g\left(a_{n}\right)}{v_{a_{n}} L_{a_{n}}\left(a_{n}\right)}\right) . \tag{1}
\end{equation*}
$$

Observe that the Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is not LCD if and only if there are polynomials $f\left(X_{1}\right)$ and $g\left(X_{1}\right)$ such that $\operatorname{deg}(f)<k, \operatorname{deg}(g)<n-k$ and

$$
\begin{equation*}
\left(v_{a_{1}} f\left(a_{1}\right), \ldots, v_{a_{n}} f\left(a_{n}\right)\right)=\left(\frac{g\left(a_{1}\right)}{v_{a_{1}} L_{a_{1}}\left(a_{1}\right)}, \ldots, \frac{g\left(a_{n}\right)}{v_{a_{n}} L_{a_{n}}\left(a_{n}\right)}\right) . \tag{1}
\end{equation*}
$$

Equation (1) holds if and only if

$$
\begin{equation*}
v_{a_{i}}^{2} L_{1}^{\prime}\left(a_{i}\right) f\left(a_{i}\right)=g\left(a_{i}\right), \quad \text { for all } i \in[n] . \tag{2}
\end{equation*}
$$

Observe that the Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is not LCD if and only if there are polynomials $f\left(X_{1}\right)$ and $g\left(X_{1}\right)$ such that $\operatorname{deg}(f)<k, \operatorname{deg}(g)<n-k$ and

$$
\begin{equation*}
\left(v_{a_{1}} f\left(a_{1}\right), \ldots, v_{a_{n}} f\left(a_{n}\right)\right)=\left(\frac{g\left(a_{1}\right)}{v_{a_{1}} L_{a_{1}}\left(a_{1}\right)}, \ldots, \frac{g\left(a_{n}\right)}{v_{a_{n}} L_{a_{n}}\left(a_{n}\right)}\right) . \tag{1}
\end{equation*}
$$

Equation (1) holds if and only if

$$
\begin{equation*}
v_{a_{i}}^{2} L_{1}^{\prime}\left(a_{i}\right) f\left(a_{i}\right)=g\left(a_{i}\right), \quad \text { for all } i \in[n] . \tag{2}
\end{equation*}
$$

Lemma

$H_{1}\left(X_{1}\right):=\sum_{a \in A_{1}} \frac{L_{a}\left(X_{1}\right)}{L_{a}(a)} v_{a}^{2} L_{1}^{\prime}(a)$ has the following properties:
(i) $H_{1}\left(a_{i}\right)=v_{a_{i}}^{2} L_{1}^{\prime}\left(a_{i}\right)$, for all $i \in[n]$.
(ii) $\operatorname{deg}\left(H_{1}\right)<n$.
(iii) $H_{1}\left(X_{1}\right)$ and $L_{1}\left(X_{1}\right)$ are coprime in $K\left[X_{1}\right]$.

Theorem

$C_{k}\left(A_{1}, v\right)$ is not LCD if and only if there are polynomials $f\left(X_{1}\right), g\left(X_{1}\right)$ and $h\left(X_{1}\right)$ in $K\left[X_{1}\right]$ such that $\operatorname{deg}(f)<k, \operatorname{deg}(g)<n-k$ and

$$
L_{1}\left(X_{1}\right) h\left(X_{1}\right)+H_{1}\left(X_{1}\right) f\left(X_{1}\right)=g\left(X_{1}\right)
$$

where $H_{1}\left(X_{1}\right)$ is the polynomial associated to $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ defined on previous lemma.

Theorem

$C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is not LCD if and only if there are polynomials $f\left(X_{1}\right), g\left(X_{1}\right)$ and $h\left(X_{1}\right)$ in $K\left[X_{1}\right]$ such that $\operatorname{deg}(f)<k, \operatorname{deg}(g)<n-k$ and

$$
L_{1}\left(X_{1}\right) h\left(X_{1}\right)+H_{1}\left(X_{1}\right) f\left(X_{1}\right)=g\left(X_{1}\right),
$$

where $H_{1}\left(X_{1}\right)$ is the polynomial associated to $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ defined on previous lemma.

Theorem

Let $g_{1}\left(X_{1}\right), \ldots, g_{m+2}\left(X_{1}\right)$ be the remainders of the polynomials $L_{1}\left(X_{1}\right)$ and $H_{1}\left(X_{1}\right)$. The Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is not LCD if and only if there is $i \in[m+2]$ such that

$$
\operatorname{deg}\left(g_{i}\right)<n-k<\operatorname{deg}\left(g_{i-1}\right)
$$

Theorem

Let $g_{1}\left(X_{1}\right), \ldots, g_{m+2}\left(X_{1}\right)$ be the remainders of the polynomials $L_{1}\left(X_{1}\right)=\prod_{a_{1} \in A_{1}}\left(X_{1}-a_{1}\right)$ and $H_{1}\left(X_{1}\right):=\sum_{a \in A_{1}} \frac{L_{a}\left(X_{1}\right)}{L_{a}(a)} v_{a}^{2} L_{1}^{\prime}(a)$. The Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is LCD if and only if

$$
n-k \in\left\{n, n-1, \ldots, \operatorname{deg}\left(g_{1}\right), \operatorname{deg}\left(g_{2}\right), \ldots, \operatorname{deg}\left(g_{m+2}\right)\right\} .
$$

Theorem

Let $g_{1}\left(X_{1}\right), \ldots, g_{m+2}\left(X_{1}\right)$ be the remainders of the polynomials $L_{1}\left(X_{1}\right)=\prod_{a_{1} \in A_{1}}\left(X_{1}-a_{1}\right)$ and $H_{1}\left(X_{1}\right):=\sum_{a \in A_{1}} \frac{L_{a}\left(X_{1}\right)}{L_{a}(a)} v_{a}^{2} L_{1}^{\prime}(a)$. The Cartesian code $C_{k}\left(A_{1}, \boldsymbol{v}\right)$ is LCD if and only if

$$
n-k \in\left\{n, n-1, \ldots, \operatorname{deg}\left(g_{1}\right), \operatorname{deg}\left(g_{2}\right), \ldots, \operatorname{deg}\left(g_{m+2}\right)\right\} .
$$

Corollary

Let $g_{1}\left(X_{1}\right), \ldots, g_{m+2}\left(X_{1}\right)$ be the remainders of the polynomials $L_{1}\left(X_{1}\right)=\prod_{a_{1} \in A_{1}}\left(X_{1}-a_{1}\right)$ and $L_{1}^{\prime}\left(X_{1}\right)$, the formal derivative of $L_{1}\left(X_{1}\right)$. The Reed-Solomon code $R S_{k}\left(A_{1}\right)$ is $L C D$ if and only if

$$
n-k \in\left\{n, n-1, \ldots, \operatorname{deg}\left(g_{1}\right), \operatorname{deg}\left(g_{2}\right), \ldots, \operatorname{deg}\left(g_{m+2}\right)\right\} .
$$

Example

Let $K:=\mathbb{F}_{13}$ and $A_{1}:=\{0,2,3,5,6,8,10,11\}$. Then the degrees of the remainders are $0,3,4,5,6$ and 7 . Thus, the Reed-Solomon code $\operatorname{GRS}_{k}\left(A_{1}, 1\right)$ is LCD if and only if $k \in\{0,1,2,3,4,5,8\}$.

Example

Let $K:=\mathbb{F}_{13}$ and $A_{1}:=\{0,2,3,5,6,8,10,11\}$. Then the degrees of the remainders are $0,3,4,5,6$ and 7 . Thus, the Reed-Solomon code $G R S_{k}\left(A_{1}, 1\right)$ is LCD if and only if $k \in\{0,1,2,3,4,5,8\}$.

Example

Using the same A_{1} than previous example but now $K:=\mathbb{F}_{17}$, we obtain that the degrees of the remainders are $0, . ., 7$. Thus, the Reed-Solomon code $\operatorname{GRS}_{k}\left(A_{1}, \mathbf{1}\right)$ is always LCD. Of course $0 \leq k \leq 8$.

References

C. Carlet and S. Guilley, Complementary dual codes for counter- measures to side-channel attacks. In: E. R. Pinto et al. (eds.), Coding Theory and Applications, CIM Series in Mathematical Sciences, vol. 3, pp. 97-105, Springer Verlag, 2014.
J. L. Massey, Linear codes with complementary duals, Discrete Mathematics 106/107, 337-342, 1992.

Thanks for your time.

