
ANALYSIS QUALIFIER
Spring 2024

1/3/2024

INSTRUCTIONS. Write on only one side of the paper; anything written on
a backside will be ignored. Write in ink, not pencil. Try to keep crossing out to
a minimum.

1. Let {an} be a sequence of real numbers and let S be the set of all points
a ∈ R such that a is the limit of a subsequence of S. Prove S is a closed
subset of R.

2. Let f : Rn → R be continuous and assume there exists a constant C such
that |f(x)| ≥ C|x|2 for al x ∈ Rn. Prove that f−1({x}) is compact for all
x ∈ Rn.

(If x = (x1, . . . , xn) ∈ Rn, we define |x| = (x2
1 + · · ·x2

n)1/2.)

3. Let (X, d) be a discrete metric space; that is d : X × X → R satisfies
d(x, y) = 1 if x 6= y; d(x, x) = 0. Prove X is complete.

4. Let

S = {x ∈ R :

∞∑
n=1

xn

1 + xn
converges}.

(a) Describe S. For example, S = R or S = {x ∈ R : x 6= −1}.
(b) Does the series converge absolutely at all points of S?

(c) For x ∈ S let f(x) =

∞∑
n=1

xn

1 + xn
. Determine the largest subset of S

on which f is continuous.

5. Let f : [0, 1]→ R be continuous; assume also that f is differentiable with
continuous derivative at all points of (0, 1) and limx→0+ f ′(x), limx→1− f ′(x)
exist (and are finite). Prove there exists a sequence {pn} of polynomials
converging uniformly to f on [0, 1] such that {p′n} converges uniformly to
f ′ on (0, 1).

6. Let g : [a, b]× (0, 1]→ R be continuous and define f : [a, b]→ R∪{∞} by

f(x) = lim sup
y→0+

g(x, y)

if x ∈ [a, b]. Prove f is measurable.

Hint: For r ∈ R, m,n ∈ N with n > m, consider the set

Vn,m = {x ∈ [a, b] : g(x, y) < r if
1

n
< y <

1

m
}.

7. Compute the limit. Justify ALL essential steps.

lim
n→∞

∫ 1

0

n(1 + y)ne−2nydy

Hint: A change of variable could be convenient.



Analysis Qualifier
Fall 2023

INSTRUCTIONS. Write clearly and indicate clearly where your answer to
each exercise begins and ends.

Write on only one side of the paper. Anything written on the reverse
side will be ignored.

1. (a) Assume f : R2 → R is continuous and has the property that the
inverse image of every bounded set is bounded. Prove: f assumes a
maximum value or f assumes a minimum value.

Hints: For some a > 0 the set f−1([−a, a]) is compact non-empty.
As such it is contained in some closed disc D around the origin.
You may use without proof, and probably should use, that R2\D is
connected.

(b) Prove that the result is false for continuous f : R → R.

2. Let {xn} be a sequence in a metric space M converging to a point L ∈ M .
Prove that {xn : n ≥ 1} ∪ {L} is a compact set.

3. Let f : R → R be continuous and let

fn(x) =
1

n

n−1∑
k=0

f

(
x+

k

n

)
.

Prove that (fn) converges uniformly to a limit on every interval [a, b].

4. Brouwer’s celebrated theorem of invariance of domain states that if U is
open in Rn and f : U → Rn is injective and continuous, then f(U) is an
open subset of Rn. Use this theorem to prove: If n,m ∈ N and n ̸= m
then Rn and Rm are not homeomorphic.

5. Compute

lim
n→∞

∫ n

1

n[log(n+ x)− log n]

x4
dx

Be sure to justify all steps.

6. Assume f : [0, 1] → R is continuous. Prove that the graph of f ; the set

G(f) = {(x, f(x)) : 0 ≤ x ≤ 1},

is a subset of R2 of measure zero.

7. For each n ∈ N assume fn : [0, 1] → [0, 1] and assume there exists a
constant M ≥ 0 such that |fn(x) − fn(y)| ≤ M |x − y| for all x, y ∈ [0, 1]
and n ∈ N. Assume also that limn→∞ fn(x) exists for all x ∈ [0, 1].
Defining f : [0, 1] → R by

f(x) = lim
n→∞

fn(x)

for x ∈ [0, 1], prove that the sequence {fn} converges uniformly to f .



Analysis Qualifying Exam
Spring 2023

1. Let (X, d) be a compact metric space. Show that for every ε > 0, there exists a finite collection of ε-balls whose union contains
X (where an ε-ball is a set of the form {x ∈ X : d(x, c) < ε} for some c ∈ X.)

2. Let (xn) be a sequence in R such that

∞∑
n=1

|xn − xn−1| is convergent. Show that (xn) is a Cauchy sequence.

3. Let I = [a, b], and let f : I → R be continuous. Assume that for each x ∈ I, there is a y ∈ I such that |f(y)| ≤ 1
2 |f(x)|. Show

that there is a point c ∈ I such that f(c) = 0.

4. Let (fn) be a sequence of a continuous functions which converges uniformly to a function f on a set E ⊆ R. Prove that

lim
n→∞

fn(xn) = f(x)

for every sequence (xn) in E that converges to x.

5. Let K be a compact subset of R, and let {fn}n≥1 be a uniformly bounded and equicontinuous family of functions K → R. For
each n ≥ 1, define

gn(x) = max{f1(x), . . . , fn(x)}.

(a) Show that the family {gn}n≥1 is equicontinuous on K.

(b) Show that the sequence (gn) is increasing, that is, gn(x) ≤ gn+1(x) for all x ∈ K, and all n ≥ 1.

(c) Show that the sequence (gn) converges uniformly on K.

6. Suppose fn ≥ 0 for all n ≥ 1, fn → f a.e. on [0,∞), and there exists M > 0 such that

lim inf
n→∞

∫
E

fn dm ≤Mm(E)

for every measurable set E ⊆ R, where m denotes the Lebesgue measure. Show that

m ({x ∈ [0,∞) : f(x) > M}) = 0.

7. Suppose that f : [0, 1] is continuous. Prove that

lim
n→∞

∫ 1

0

f(xn) dx

exists and find the limit. Does the limit always exist if f is only assumed to be Lebesgue integrable?
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1. Let an ≥ 0 for all n ≥ 1 and assume that
∞∑
n=1

an is convergent. Show that
∞∑
n=1

a2n converges. Is the result

still true if the assumption that an ≥ 0 is dropped?

2. Let f : (a, b)→ R be continuous, increasing, and bounded. Show that f is uniformly continuous on (a, b).

3. Let (X, dX) be a connected metric space. Show that if X contains at least two distinct points, then X is
uncountable.

4. Consider the series
∞∑
n=1

(−1)n

nx
.

(a) Find the values of x for the series to be convergent.

(b) Find the intervals for the series to converge absolutely.

(c) Find the intervals for the series to converge uniformly.

(d) Find the intervals for the limit function of the series to be continuous.

5. Let F be an equicontinuous and bounded set of functions from R to R, and let g(x) = sup{f(x) : f ∈ F}.
Show that g is continuous.

6. Let (fn) be a sequence of measurable functions defined on a measurable set E ⊆ R. Assume that

∞∑
n=1

m

({
x ∈ E : |fn(x)| ≥ 1

n

})
<∞,

where m denotes the Lebesgue measure. Show that fn(x)→ 0 almost everywhere on E.

7. Determine the limit:

lim
n→∞

∫ 1

0

ne−x

1 + n2x2
dx.



Qualifier Problems-Spring 2022 

[1] Let {an} be a bounded sequence of real numbers and define

S = {s ∈ R : there exists a subsequence {ank
} of {an} such that lim

k→∞
ank

= s}.

Prove S is compact.

[2] Consider the series
∞∑
n=1

(
xn

4n + 1
+
n2

xn

)
1. Show that the series (defined above) converges uniformly in every interval

[1/4 + ε, 4 − ε] for 0 < ε < 15/8. Does the series also converge uniformly
in (1/4, 4)?

2. Defining f : (1/4, 4) → R by f(x) =
∞∑
n=1

(
xn

4n + 1
+
n2

xn

)
, prove f is

continuous in (a, b).

[3] Let f : R→ (0,∞) be differentiable everywhere. Assume that

lim
t→∞

f(t) = L. Show that

there exists a sequence (tn) with lim
n→∞

tn =∞ such that lim
n→∞

f ′(tn) = 0.

[4] Compute

lim
n→∞

n

∫ π

0

cos(x)

1 + n2x2
dx.

[5] Assume f : [0,∞) → R is continuous and integrable. Show that f is uni-
formly continuous if and only if

lim
x→∞

f(x) = 0.

[6] Assume f ≥ 0 and measurable. Let

Ek = {x : f(x) > 2k}.

We assume that f is finite almost everywhere. Show that f is Lebesgue inte-
grable if and only if

∞∑
k=−∞

2kλ(Ek) <∞.



[7] Suppose f is integrable on [0, b] and

g(x) =

∫ b

x

f(t)

t
dt.

Show that g is integrable and∫ b

0

g(x)dx =

∫ b

0

f(t)dt

2



Analysis-Qualifying Exam - Fall 2021

[1] Consider the sequence (fn), where

fn(x) =
e−nx

1 + xn
.

1. Show that the sequence (fn) converges point wise on [0, 1], and find the
limit function.

2. Determine if the convergency is uniform.

[2] Show that the function

f : R→ R, x 7→
√
|x|

is uniformly continuous.

[3] Let an be a non negative sequence. Show that∑
n≥1

an converges⇒
∑
n≥1

√
an/n converges.

Is the converse true?

[4] Show that there exists an injection L : N→ N such that

∞∑
j=1

(−1)L(j)/L(j) = 15.

[5] Compute

lim
n→∞

∫ n

0

n sin(u)

u(1 + n2u2)
du.

[6] Let ε > 0 be given. Construct an open subset S of [0, 1] with Lebesgue
measure less than ε so that the closure of S is [0, 1].

[7] Let f be a real valued Lebesgue integrable function defined on the real space.
Compute

lim
n→∞

∫
R
f(x) sin(nx)dλ

(λ being the Lebesgue measure). Justify all your steps!

1
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Problem 1

Consider the set X := {(xn)x∈N|xn ∈ [0, 1]}, equipped with the metric d : X × X → R
defined by d((xn), (yn)) = supn∈N |xn − yn|. Let f : X → R be uniformly continuous. Show
that f is bounded. Does the result hold if f is continuous but not uniformly continuous?

Problem 2

For each n ∈ N define fn : [0, 1]→ R by

fn(x) =

∫ 1

0

g(x, y) nyn dy

for each x ∈ [0, 1], where g(x, y) : R2 → R is continuous. Show that (fn)n∈N has a uniformly
convergent subsequence.
Hint: Apply Arzelà-Ascoli.

Problem 3

Let K ⊂ Rn. Show that if every continuous function f : K → R is bounded, then K is
compact.

Problem 4

Let A ⊂ R be a Lebesgue measurable set. Show that if 0 ≤ b ≤ m(A), then there exists a
Lebesgue measurable set B ⊂ A with m(B) = b.

Problem 5

If rn is an enumeration of rational numbers in R then R \
⋃∞

n=1(rn − 1/n2, rn + 1/n2) is not
empty. Prove or find a counterexample.

Problem 6

For each n ∈ N let fn be Lebesgue measurable and assume
∫
R |fn| ≤ 1. Consider the function

defined by

f(x) :=

{
limn→∞ fn(x), if the limit exists

0, otherwise.

Prove that f is Lebesgue measurable and that
∫
R |f | ≤ 1.



Problem 7

(a) Let

fn(x) :=
x

1 + xn
, x ≥ 0.

Show that the sequence of functions converges pointwise and find the pointwise limit.
Is the convergence uniform on [0,∞)?

(b) Compute

lim
n→∞

∫ ∞

0

fn(x) dx



DEPARTMENT OF MATHEMATICAL SCIENCES 
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Problem 1

Let f : [1,∞) → R be a continuous function such that lim
x→∞

f(x) = α, i.e. for every

ϵ > 0 there exists M > 0 such that |f(x)− α| < ϵ for all x > M . Prove that f is uniformly
continuous.

Problem 2

Let (fn)
∞
n=1 be a sequence of twice differentiable functions on [0,1] such that

fn(0) = f ′
n(0) = 0 for all n and such that |f ′′

n(x)| ≤ 1 for all x ∈ [0, 1], n ∈ N. Prove that
there is a subsequence (fnk

)∞k=1 which converges uniformly on [0, 1].

Problem 3

Assume f : Rn → Rn is continuous. Prove the following two statements are equivalent.

1. f−1(K) is compact for all compact subsets of Rn.

2. lim|x|→∞ |f(x)| = ∞.

Problem 4

Let α > 2 be a real number. Define

E = {x ∈ [0, 1] | |x− p/q| < 1/qα for infinitely many p, q ∈ N2}.

Prove that m(E) = 0. Hint: Compute the measure of Ep,q = {x ∈ [0, 1] | |x− p/q| < 1/qα}
and apply Borel-Cantelli.

Problem 5

True or False: If the boundary of a setX ⊂ Rd has outer measure 0, thenX is measurable.
Prove or find a counterexample.



Problem 6 Prove that if f : [0, 1] → R is a continuous function, then

lim
n→∞

∫ 1

0

n xn f(x) = f(1).

Problem 7

Assume fn : [0, 1] → [0,∞) is integrable for each n and (fn)
∞
n=1 converges pointwise a.e. to

f . Prove that

lim
n→∞

∫
[0,1]

fn(x)e
−fn(x)dx =

∫
[0,1]

f(x)e−f(x)dx

.



Analysis Qualifying Exam – Spring 2020

[1] Let σ : N → N be a one-to-one and onto permutation of the natural numbers. For (E, d) a metric space, prove
that if the sequence {xn}∞n=1 converges to x in E, then the permuted sequence {xσ(n)}∞n=1 also converges to x.

[2] Let {xn}∞n=1 be a bounded sequence of real numbers. Prove that

lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

Give an example where the inequality is strict.

[3] Give an example of a metric space (E, d) and a subset K that is closed and bounded in E but is not a compact
subspace of E. Prove that your example satisfies the stated properties.

[4] Let K ⊂ R be compact. Prove that the sequence of functions {fn}∞n=1 defined by fn(x) = x/n for all x ∈ R and
n ∈ N is uniformly convergent on K but not uniformly convergent on Kc.

[5] Recall that a metric space, (X, d), is totally bounded if for every ε > 0 there exists a finite set of points
{x1, . . . , xn} ⊆ X such that

X ⊆
n⋃
i=1

Nε(xi).

Theorem: If every sequence in X contains a Cauchy subsequence, then X is totally bounded.

(i) State the definition that a sequence, {xn}∞n=1 ⊆ (X, d), is a Cauchy sequence.

(ii) State the contrapositive of the above theorem.

(iii) Prove the above theorem using the contrapositive formulation in (ii).

[6] Let E1, E2 be compact subsets of R such that E1 ⊂ E2.
(a) Prove that m((E2 − E1) ∩ [−t, t]) is a continuous function of t ≥ 0.
(b) Prove that for every c ∈ R with m(E1) ≤ c ≤ m(E2) there exists a compact set E such that E1 ⊂ E ⊂ E2

and m(E) = c.

[7] Prove that the function F : R→ R defined by

F (t) =

∞∫
0

e−x cos(xt) dx for t ∈ R

is continuous.



Analysis Qualifying Exam – Fall 2019

[1] Let {an} and {bn} be bounded sequences of real numbers. Prove that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Give an example where equality does not hold.

[2] Let (E, d) be a metric space and f : E → R. Suppose E = X ∪ Y where X,Y are both open in E and the
restrictions f |X : X → R and f |Y : Y → R are continuous. Prove that f is continuous on E.

[3] Let (E, d) be a compact metric space and f : E → R be a continuous function. Prove that f is uniformly
continuous.

[4] Show that the sequence of functions fn : [0, 1]→ R

fn(x) = esin(x+n2) +
1

n
sin(ex+n2

)

has a uniformly convergent subsequence.

[5] Define

fn(x) =

n∑
k=0

xk

k!
.

Compute the limit

lim
n→∞

n∫
0

fn(x)e−2x dx

and justify all steps of your solution.

[6] Let Ek be a sequence of measurable subsets of R such that

∞∑
k=1

m(Ek) <∞.

Show that

{x ∈ R | x ∈ Ek for infinitely many k} =

∞⋂
n=1

∞⋃
k=n

Ek

and that this is a set of measure zero.

[7] Let f : R→ R be a Lebesgue integrable function. Show that for every ε > 0 there exists M > 0 such that∣∣∣∣∣
∫
(−∞,−M)∪(M,∞)

f(x) dx

∣∣∣∣∣ < ε and

∣∣∣∣∣
∫
f−1((−∞,−M)∪(M,∞))

f(x) dx

∣∣∣∣∣ < ε



Analysis Qualifying Exam
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1. Let (X, d) be a metric space and A ⊂ X. For each x ∈ X define the
distance between x and A by

dist(x,A) = inf
a∈A
{d(x, a)}.

(a) Show that
|dist(x,A)− dist(y, A)| ≤ d(x, y).

(b) Prove that dist(·, A) : X → [0,∞) is a continuous function.

(c) Suppose A,B are compact, disjoint subsets of X. Prove that there
exists γ > 0 such that

dist(b, A) ≥ γ for all b ∈ B.

2. Let K ⊂ R be a compact set and let U be an open set that contains K.
Prove that there is an ε > 0 such that for every x ∈ K, (x−ε, x+ε) ⊂ U .

3. Suppose f : [0, 1]→ R is continuous. Prove that the graph

G := {(x, y) ∈ [0, 1]× R : y = f(x)}

is a compact subset of the metric space [0, 1]×R with Euclidean topology.

4. Let x ∈ R and
fn(x) =

x

1 + nx2
n = 1, 2, 3, . . .

(a) Show that {fn} converges uniformly to a function f .

(b) Show that the equation

f ′(x) = lim
n→∞

f ′n(x)

is correct if x 6= 0 but false if x = 0.

1



5. Let f be a measurable function, and let f = g a.e. Then show that g is
also measurable.

6. Suppose f is a non-negative integrable function, and set

A = {x|f(x) = +∞}.

Show that µ(A) = 0, that is the measure of the set A is zero.

7. Let µ denote the Lebesgue measure on R. Suppose f is a bounded
measurable function satisfying µ(In) < n for each n, where In denotes
the set

In := {x ∈ R : |f(x)| > 1/n3}.
Prove that

∫
|f | <∞, i.e., f is integrable.

Hint: You are allowed to assume the truth of the p-series test, i.e., that

the numerical series
∞∑
k=1

1

np
converges for any p > 1.

2
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1. State the following definitions

(a) A metric space is sequentially compact if

(b) A metric space is complete if

(c) A metric space is totally bounded if

(d) Show that if a metric space is totally bounded and complete, then
it is sequentially compact.

2. Let (X, d) be a metric space with disjoint, nonempty, closed subsets
A,B ⊂ X. Show that the function V : X → [0, 1] defined by

V (x) =
dist(x,A)

dist(x,A) + dist(x,B)

is continuous. Then prove that any connected metric space containing
at least two points is uncountable.

3. Let X, Y be metric spaces with Y complete, A be a dense subset of X,
and f : A → Y be a uniformly continuous function. Prove that there
exists a uniformly continuous function g : X → Y such that g(a) = f(a)
for all a ∈ A.

4. Let f : [0,∞)→ R be bounded and continuous. Suppose lim
h→∞

1

h

∫ h

0

f(x)dx

exists. Prove that

lim
h→∞

1

h

∫ h

0

f(x)dx ≤ lim sup
x→∞

f(x).

5. Let {fk(x)} be a sequence of measurable functions defined on a measur-
able set E ⊂ R of finite measure such that fk(x) : E → R for each k.
If |fk(x)| ≤ Mx < ∞ for all k and x ∈ E, show that for every ε > 0,
there exists a closed F ⊂ E and a finite M such that m(E \ F ) < ε and
|fk(x)| ≤M for all k and x ∈ F.

1



Analysis Qualifying Exam Fall 2018

6. Let f ∈ L1(R) and h ∈ R. Show (without using the change of variables
rule from Calculus, which is inappropriate for this problem) that∫

R
f(x)dx =

∫
R
f(x− h)dx

7. Let g ∈ L1(0,∞), and consider the function

f(x) =

∫ ∞

0

e−xyg(y) dy.

for x ∈ (0,∞). Prove that f is differentiable for all x > 0 and compute
f ′(x).

2
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1. Suppose X is a compact metric space. Given an open cover U of X, show
that there exists a δ > 0 such that for every x ∈ X the set

{y ∈ X : d(x, y) < δ}

is contained in some member of U .

2. Suppose that X is a compact metric space and f : X → X is an isometry.
Show that f(X) = X. i.e., f is onto.

Hint: Suppose that f is not onto. Starting with a point y ∈ X not in the
image, iterate f and consider the sequence of iterates fn(y).

3. Prove that the sequence of functions

fn(x) = cos(x+ n) +
cos(1 + enx)

n

has a subsequence that converges uniformly on [0, 1].

4. Suppose that A ⊂ R is Lebesgue measurable with Lebesgue measure
m(A) = 1. Show that there is a set B ⊂ A such that m(B) = 1/2.

5. (a) State Fatou’s Lemma, the Monotone Convergence Theorem, and
Lebesgue’s Dominated Convergence theorem.

(b) Provide an example where the inequality in Fatou’s Lemma is strict.

6. Suppose f is a continuous function on R satisfying limx→+∞ f(x) = L ∈ R.
Prove that the following limit exists and compute its value:

lim
n→∞

∫ 1

0

f(nx)dx.

7. Suppose f is Lebesgue integrable on R. Prove that

lim
n→∞

∫
f(x) cos(nx) dx = 0.

1



Analysis Qualifying Exam, Fall 2017

1. Prove that the intersection ∞⋂
j=1

Kj

of a nested sequence
K1 ⊃ K2 ⊃ K3 ⊃ ...

of non-empty compact sets (contained in a metric space) is non-empty and
compact.

2. Prove that the function

f(x) =
1

x2

is uniformly continuous on the interval [3,∞) and is not uniformly continuous
on the interval (0, 3).

3. Let C0[a, b] denote the metric space of continuous function on the interval
[a, b] with the metric d(f, g) := sup{|f(x)− g(x)| : x ∈ [a, b]}.

(a) Use the Stone-Weierstrass theorem to prove that the set of even poly-
nomials, i.e., functions of the form p(x) = a0 + a2x

2 + ...+ a2nx
2n is dense in

C0[0, 1].
(b) Prove that the set of even polynomials is not dense in the space

C0[−1, 1].

4. Suppose Ek ⊂ R is measurable for each k = 1, 2, ..., and

m(Ek) < 1/2k.

Prove that for every ε > 0 there exists an N such that

m

( ∞⋃
k=N

Ek

)
< ε.

1



5. Suppose f is a non-negative, Lebesgue integrable function on R. Prove
that for every ε > 0 there exists a δ > 0 such that∫

E

f(x)dx < ε,

for every measurable set E ⊂ R that satisfies m(E) < δ.

6. Prove that the limit exists and compute its value:

lim
n→∞

∫ ∞
1/2

1

x2
xn

x2 + xn
dx.

7. Suppose g ∈ L1([1,∞)), and for x > 1 consider the function

f(x) =

∫ ∞
1

e−
x
y g(y) dy.

Fix x > 1 and justify the following formula (starting from the definition of
the derivative as the limit of a difference quotient):

f ′(x) =

∫ ∞
1

−1

y
e−

x
y g(y) dy.

2
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Problem 1: Let f be differentiable on R. Suppose that there exists M > 0
such that |f(k)| ≤ M for each integer k, and |f ′(x)| ≤ M for all x ∈ R.
Show that f is bounded, i.e., there exists B > 0 such that |f(x)| ≤ B for all
x ∈ R.

Problem 2: For each of the following descriptions, give an example of such
a sequence of real numbers or explain that it is not possible.

a. An unbounded sequence that has a bounded subsequence that does not
converge and also has a subsequence that does converge.

b. A sequence that has a monotone subsequence and a bounded subsequence
but does not have a convergent subsequence.

c. A sequence that has subsequences converging to two different values not
appearing in the sequence.

Problem 3: Suppose f : [0, 1] → R is continuous. Prove that the graph
G := {(x, y) ∈ [0, 1] × R : y = f(x)} is compact. Hint: Use the sequential
criterion for compactness.

Problem 4: Prove that the sequence hn(x) = x
1+xn converges uniformly on

the interval [2,∞) but does not converge uniformly on [0,∞).

Problem 5: Compute

lim
n→∞

∫ ∞
0

e−nx sin(x/n)dx.

Justify the steps.

Problem 6: Suppose that f ∈ L1(R).

• For τ ∈ R, show that∫
R
f(x) dx =

∫
R
f(x− τ) dx.

• Show that
lim
h→0
‖fh − f‖L1(R) = 0,

where fh is defined by fh(x) = f(x+ h).

1



Problem 7: Recall that if f, g ∈ L1(R) then the convolution of f and g
defined by

(f ∗ g)(x) :=

∫
R
f(y)g(x− y) dy,

exists for almost every x ∈ R and f ∗ g ∈ L1(R). Moreover, convolu-
tion defines a commutative binary operation on L1 with ‖f ∗ g‖L1(R) ≤
‖f‖L1(R)‖g‖L1(R), i.e. L1(R) is a commutative Banach algebra under the
operation of convolution.

(A) Suppose that f ∈ L1(R) and that g : R → R is a bounded function.
Prove that (f ∗ g)(x) is uniformly continuous. Hint: you can use the
results of problem 5 even if you did not complete that problem.

(B) Prove that there is no function δ ∈ L1(R) having that

(δ ∗ f)(x) = f(x),

for all f ∈ L1(R). Hint: let f be the indicator function of an interval
(or just take f to be your favorite discontinuous, bounded, L1 func-
tion). Consider both sides of δ∗f = f , taking into account your choice
and the results of part (A).

2



Problem 8:

• Give an example of a sequence of measurable functions fn : [0, 1]→ R
which converge to zero in L1(R) norm, but which do not converge
pointwise for any x ∈ [0, 1], i.e. a sequence of functions which has that

lim
n→∞

‖fn‖L1(R) = 0,

but that the sequence {fn(x)}∞n=0 diverges for all x ∈ [0, 1]. (This
shows that L1 convergence does not imply pointwise convergence at
even a single point).

• Let fn : R→ R be a sequence of measurable functions with fn ∈ L1(R)
for each n. Suppose that

‖fn − fn−1‖L1(R) ≤ 2−n.

Prove that there is a measurable function f : R → R having that f ∈
L1(R), and that fn converges to f in L1 norm, i.e.

lim
n→∞

‖fn − f‖L(R) = 0.

Justify your steps.

• Let fn and f be as in the previous problem. Show that you actually
have

lim
n→∞

fn(x) = f(x),

a.e., in other words the sequence is pointwise convergent almost ev-
erywhere. (This shows that L1 convergence, plus rates of convergence,
does imply pointwise convergence).

3



Analysis Qualifying Exam
Fall, 2016

Problem 1:

• Let a, b ∈ R and suppose that {an}∞n=1 and {bn}∞n=0 are sequences of
real numbers with

lim
n→∞

an = a, and lim
n→∞

bn = b.

Prove that
lim
n→∞

anbn = ab.

• Prove that a bounded increasing sequence of real numbers converges
to a limit.

Problem 2: Suppose that X,Y are metric spaces and that X is compact.
If f : X → Y is continuous prove that f(X) is compact.

Problem 3: Suppose that f is a positive, continuous function on R such
that

lim
|x|→∞

f(x) = 0.

Prove that f is uniformly continuous.

1



Problem 4:

• Give an example of a function which is Lebesgue integrable but not
Riemann integrable. Explain your reasoning.

• Give an example of a sequence of bounded, continuous functions fn : R→
R having that

lim
n→∞

fn(0) =∞,

but that
lim
n→∞

‖fn‖L1(R) = 0.

(So: divergence at a point does not imply divergence in L1).

• Given an example of a sequence of functions fn : R→ R having that

‖fn‖L1(R) = 1

for every n ∈ N but which converges pointwise to zero. (So: pointwise
convergence to zero does not imply L1 convergence to zero).

Problem 5: Suppose that f ∈ L1(R).

• For τ ∈ R, show that∫
R
f(x) dx =

∫
R
f(x− τ) dx.

• Show that
lim
h→0
‖fh − f‖L1(R) = 0,

where fh is defined by fh(x) = f(x+ h).

2



Problem 6: Recall that if f, g ∈ L1(R) then the convolution of f and g
defined by

(f ∗ g)(x) :=

∫
R
f(y)g(x− y) dy,

exists for almost every x ∈ R, i.e. f ∗ g ∈ L1(R). Moreover, convolu-
tion defines a commutative binary operation on L1 with ‖f ∗ g‖L1(R) ≤
‖f‖L1(R)‖g‖L1(R), i.e. L1(R) is a commutative Banach algebra under the
operation of convolution.

Question: Define the functions φn : R→ R by

φn(x) =

{
n/2 if |x| ≤ 1/n

0 otherwise
.

Prove that for all f ∈ L1(R),

lim
n→∞

‖f ∗ φn − f‖L1 = 0.

Hint: You are allowed to use the results stated in Problem 5 (even if you
did not do that problem).

Problem 7: For f ∈ L1(R) and x ∈ R, show (while justifying each step)
that the derivative of the function

F (x) =

∫
R

sin(y)f(x− y) dy,

is given by the formula

F ′(x) =

∫
R

cos(y)f(x− y) dy.

(Hint: think of using the dominated convergence theorem).

3



Analysis Qualifying Exam
January 21, 2016

INSTRUCTIONS

• Number all your pages andwrite only on one side of the paper.
Anything written on the second side of a page will be ignored.

• Write your name at the top of each page.

1. Let f : R → R satisfy f(x+y) = f(x)+f(y) for all x, y ∈ R and f(1) = 1.
Prove:

(a) f(x) = x for all rational numbers x.

(b) Assume, in addition, that f is continuous at 0. Prove that then
f(x) = x for all x ∈ R.

2. We say that a family of subsets of a metric space (X, d) is locally finite
if for each p ∈ X there is an open set V such that p ∈ V and V only
intersects a finite number of the sets Fn. Prove: If {Fn} is a locally finite

family of closed sets, then
∞∪

n=1

Fn is closed.

3. Let X be the metric space consisting of all sequences a = (a1, a2, . . .) of
real numbers such that

∑∞
n=1 |an| < ∞, with the distance function defined

by

d(a, b) =
∞∑

n=1

|an − bn|

if a = (a1, a2, . . .), b = (b1, b2, . . .).

(a) Prove B̄(0, 1) = {a = (a1, a2, . . .) : d(a, 0) ≤ 1} is not compact.

(b) Let C = {a = (a1, a2, . . .) : |an| ≤ 1/n2 for n ∈ N}. Prove C is
compact.

4. Let X be a metric space and let fn : X → R for each n ∈ N. We say that
the sequence {fn} is locally uniformly convergent if for every p ∈ X there
exists an open set U in X such that p ∈ U and the sequence of restrictions
{fnU} converges uniformly on U . Prove: If X is compact and the sequence
{fn} converges locally uniformly, then it is uniformly convergent.

5. Let f : [−1, 1] → R be continuous and even (f(−x) = f(x) for all x ∈
[−1, 1]). Prove: For each ϵ > 0 there exists a polynomial p such that
|f(x)− p(x2)| < ϵ for all x ∈ [−1, 1].

6. Prove or disprove: There exists a closed subset F of R such that F has
positive measure and F ∩Q = ∅.

7. Evaluate, justifying all steps:

lim
n→∞

∫ ∞

0

n sin x
n

x(1 + x2)
dx.

Hint: You may use that | sinx/x| ≤ 1 for all x ∈ (0,∞).



Analysis Qualifying Exam
August 28, 2015

INSTRUCTIONS

• Read the instructions.

• Number all your pages andwrite only on one side of the paper.
Anything written on the second side of a page will be ignored.

• Write your name at the top of each page.

• Clearly indicate which problem you are solving, keep solutions to different
problems separate.

1. Let un ≥ 0 for all n ∈ N. Prove: If
∞∑

n=1

un converges, then
∞∑

n=1

√
un

n
also

converges.

2. Prove there exists a unique differentiable function Φ : R → R such that
Φ′(x) = e−x2

for all x ∈ R and Φ(0) = 0.

3. Let X be a metric space, let C ⊂ X have the property that if x, y ∈ C,
there exists a connected subset A of C such that x, y ∈ A. Prove: C is
connected.

4. Let E be an equicontinuous and bounded set of functions from [0, 1] to
R. Prove: If {fn} is a sequence in E that converges for each rational
x ∈ [0, 1], then {fn} converges uniformly.

5. Let f : R → R be Lebesgue integrable. Prove that

lim
n→∞

∫
R
f(x) cosnx dx = 0.

6. Assume f : R → R is continuous. Prove: The inverse image under f of a
Borel set is a Borel set.

7. Prove that the following limit exists:

lim
n→∞

∫ ∞

0

cosx

nx2 + 1/n
dx.

Be sure to justify all steps.

Hint: Change variables by t = nx.



Analysis Qualifying Examination – Spring 2015

Your Name: Your Z-Number:

In some cases partial credit may be given, but you should endeavor to fully complete as many

problems as possible.

1. Let {an} be a sequence of real numbers that converges to a. Show that

lim
n→∞

a1 + a2 + · · ·+ an
n

= a.

2. Consider the series ∞∑
n=1

x

(1 + x)n
.

Show that the series converges for all x ≥ 0 and that it converges uniformly on the interval [r,∞)

for every r > 0. Does the series converge uniformly on (0,∞)? Justify your answer.

3. Let f : R → R be a continuous function that satisfies, for each x ∈ R,

f(x) ≤ f(x− h) + f(x+ h)

2
for all h > 0.

Show that the maximum value of f on any bounded closed interval [a, b] is attained at one of the

endpoints, that is, either f(a) or f(b) is the maximum value of f on the interval [a, b].

4. (a) Show that the inequalities
x

x+ 1
< ln(1 + x) < x

hold for all x > 0.

(b) Define

f(x) =

(
1 +

1

x

)x

and g(x) =

(
1 +

1

x

)x+1

for all x > 0,

where we define xy = ey lnx for all x > 0 and y > 0 and e is Euler’s number (also known as Napier’s

constant). Show that f is strictly increasing while g is strictly decreasing on the interval (0,∞), and

that f(x) < e < g(x) for all x > 0.

5. Let {fn} be a sequence of real-valued functions defined on a compact matric space (X, d) such that

fn(xn) → f(x) in R whenever xn → x in X. Assume that f is continuous. Show that {fn} converges

uniformly to f .

6. (a) Show that the sequence of functions

fn(x) = e−n(nx−1)2

point-wise converges to zero but not uniformly on [0, 1].

(b) Nevertheless show that

lim
n→∞

∫ 1

0

fn(x) dx = 0.



7. Let (X, d) be a compact metric space. Assume that f : X → X is an expansion map, that is,

d(f(x), f(y)) ≥ d(x, y) for all x, y ∈ X. For every x ∈ X, define f 2(x) = f(f(x)), f 3(x) = f(f 2(x)),

and in general fn(x) = f(fn−1(x)) for n ≥ 2. Prove the following statements:

(a) For every x ∈ X, we have d(x, fm−n(x)) ≤ d(fn(x), fm(x)) for all positive integers m and n with

m > n, and that the sequence {fn(x)} contains a subsequence {fnk(x)} such that fnk(x) → x

as k → ∞.

(b) For every pair of points (x, y), the sequence {fn} contains a subsequence {fnk} such that

fnk(x) → x and fnk(y) → y as k → ∞. (Hint: consider the compact metric space X ×X and

the product metric D((x, y), (u, v)) = d(x, u)+d(y, v) and the map F : X×X → X×X defined

by F (x, y) = (f(x), f(y)))

(c) For all x, y ∈ X, d(f(x), f(y)) = d(x, y), that is, f is an isometry.



Analysis Qualifying Examination Fall 2014

In some cases partial credit may be given, but you should endeavor to fully complete as many

problems as possible.

1. Let f be a real-valued differentiable function defined on (−∞,+∞). Suppose that f has a bounded

derivative. Show that there exist nonnegative constants A and B such that |f(x)| ≤ A|x|+B for all

x ∈ (−∞,+∞).

2. Consider the series ∞∑
n=1

n2x2

1 + n4x4
.

(a) Show that for every δ > 0 the series converges uniformly on the set {x : |x| ≥ δ}.
(b) Does the series converge uniformly on (−∞,∞)? Justify your answer.

3. Let f be a continuous real-valued function on [a, b]. Suppose that there exists a constant M ≥ 0

such that

|f(x)| ≤ M

∫ x

a

|f(t)| dt

for all x ∈ [a, b]. Show that f(x) = 0 for all x ∈ [a, b].

4. Let A and B be two nonempty subsets of Rn, where Rn is the n-dimensional Euclidean space equipped

with the usual metric. Define A + B = {a + b : a ∈ A, b ∈ B}, where a + b is the sum of vectors a

and b in the usual sense.

(a) If A and B are compact, show that A+B is compact.

(b) If A and B are connected, show that A+B is connected.

(b) If one of A and B is open, show that A+B is open.

5. Show that the following limit exists and find the limit.

lim
n→∞

∫ ∞

0

cos(xn)

1 + xn
dx.

6. Let f be a real-valued measurable function defined on a bounded measurable set E. Suppose that

there exists a δ > 0 such that
∫
F
|f | < 1 whenever F is a measurable subset of E and m(F ) < δ.

Show that f is Lebesgue integrable on E. Here m denotes the Lebesgue measure.

7. Let E be a measurable subset of R. Define E2 = {x2 : x ∈ E}. If E has measure zero, show that E2

also has measure zero.



Analysis Qualifying Examination Spring 2014

[1] Let (M, ρ) be a metric space. Suppose that f : M→ R is uniformly continuous. Show that
if {xn} is a Cauchy sequence in M, then the sequence {f(xn)} is Cauchy in R.

Give an example which shows that the result is not necessarily true if f is assumed to be
continuous but not uniformly continuous.

[2] Show that the set A = {(x, y) ∈ R2 | x2 + y2 = 1} is a compact, connected subspace of the
Euclidean space R2.

[3] A subset A of a metric space (M, ρ) is precompact if its closure cl(A) is compact.

Show that if A is precompact, then for every ε > 0 there exists a finite covering of A by open
balls of radius ε with centers in A.

[4] Let ε > 0. Construct an open subset S of [0, 1] with Lebesgue measure less than ε so that
the closure of S is [0, 1].

[5] Let λ be the Lebesgue measure on R. Suppose E is a Lebesgue measurable subset of [0, 1]
with λ(E) = 1. Show that E is dense in [0, 1].

[6] Let {fn}∞n=1 be a sequence of Lebesgue measurable functions on a Lebesgue measurable
subset E of R which converges pointwise to a function f . Suppose

∫
E
|fn| ≤ 1 for all n ∈ N.

Prove
∫
E
|f | ≤ 1.

[7] Compute

lim
n→∞

n

∫ 1

0

sin(u)

u
e−nu sin(nu) du.



Analysis Qualifying Exam.
Sept 6, 2013

Student Name Print ___________________________

There are 7 questions.



Student Name Print ___________________________

1. Assume that xk is a Cauchy sequence in a metric space, M,, and that a subsequence,
xkn, converges. Prove that xk converges.



Student Name Print ___________________________

2. Prove that if 0  s ≤ 1 then fx  xs is uniformly continuous on 0,.



Student Name Print ___________________________

3. Assume that M, is a compact metric space, and that G is an open cover ofM.
Prove that there exists   0 so that any ball with radius smaller than  is a subset of at
least one of the G.



Student Name Print ___________________________

4. Assume that f and g are continuous non-negative functions on a compact metric space,
M, and that x:gx  0 ⊆ x:fx  0. Prove that for any   0 there exists K
so that for all x ∈ M,

fx ≤   Kgx.



Student Name Print ___________________________

5. Assume that M, is a complete metric space and that f : M  M is a uniform
contraction, that is to say, that there exists 0  q  1 so that ∀x,y ∈ M, .

fx, fy ≤ qx,y
Prove that there exists a unique x ∈ M so that fx  x.



Student Name Print ___________________________

6. Assume that f is a real-valued Lebesgue measurable function on R and for all   0,
x:fx    x:fx  − then

x:|f|   ≤ 2e−
2 
−


efxdx.

Note:  denotes Lebesgue measure on R.



Student Name Print ___________________________

7. Prove that if f is a Lebesgue measurable function and


−


|fx|dx  

then ∀  0 there exists a Lebesgue measurable set, E, so that E  , |f| is
bounded on E, and


−,\E

|fx|dx  .



Analysis Qualifying Examination Spring 2013

Name:

1. Give a proof of Dini’s Theorem: let Fn : [a, b]→ R be an increasing sequence of continuous functions

(i.e., Fn+1 ≥ Fn for all n) converging pointwise to a continuous function F . Then (Fn) converges to

F uniformly

2. Let f : R→ R+ be a continuous integrable function. Show that

f is uniformly continuous⇔ lim
|x|→∞

f(x) = 0

3. Let f : (0, 1]→ R be differentiable such that f ′ is bounded on (0, 1]. Prove that lim
x→0+

f(x) exists.

4. Show that the series ∑
n≥1

xn

n+ 1
(1− x)

converges uniformly on [−1, 1].

5. Let g : R→ R be a measurable function. Assume that for each measurable set B ⊂ R∫
B

gdλ = 0.

Show that g ≡ 0 a.e.

6. Compute

lim
n→∞

∫ 1

0

n4u2e−nudu

1 + n2u



Analysis Qualifying Examination Fall 2012

Solve as many problems as you can. You do not have to solve all to pass the qualifying exam.

1. Suppose that each fn is increasing and continuous on [a, b], and that the series

F (x) =
∞∑

n=1

fn(x)

converges for every x ∈ [a, b]. Prove that F is continuous on [a, b].

2. Let g : R→ R be a C2 function. Assume that g and g′′ are both bounded on R. Show that g′ is bounded on

R

Hint: Show that there exists a sequence (bn), n ∈ Z such that n < bn ≤ n + 1 and (g′(bn)) is a bounded

sequence.

3. Define

un =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · · · 2n

(a) Determine the radius of convergence R of the series
∑

n≥1 unxn

(b) Study the convergence at x = −R (hint: study − log(un)).

(c) Study the convergence at x = R.

4. Let (an) be a non negative sequence. Show that∑
n≥1

an converges⇒
∑
n≥1

√
an

n
converges.

Is the converse true?

5. Compute

lim
n→∞

∫ n

0

(
1 +

x

2n

)n

e−xdx.

6. Let E be a measurable set of finite measure. For each x ∈ R, let f(x) = m(E ∩ (−∞, x]). Prove that f is

uniformly continuous on R, and that f(n)→ m(E) as n→∞.



Analysis Qualifying Examination Spring 2012

Name: Z-Number:

In some cases partial credit may be given, but you should endeavor to fully complete as many

problems as possible.

1. Consider the series

f(x) =
∞∑
n=1

nx

1 + n3x2
.

(a) Show that the series converges for every real number x.

(b) Show that for any δ > 0 the series converges uniformly for |x| ≥ δ.

(c) Show that the function f defined above for all real numbers x is continuous at every non-zero x.

Is it continuous at x = 0? Justify your answer.

2. Let f be a real-valued differentiable function defined on (−r, r), where r is a positive number. Show

that f is an even function if and only if its derivative f ′ is an odd function.

3. Let f : R → R be a continuous function satisfying the equation f(x + y) = f(x)f(y) for all real

numbers x and y.

(a) Show that f(0) = 0 or f(0) = 1.

(b) Show that if f(0) = 1, then

f
(m
n

)
= (f(1))

m
n

for all integers m and n, where n is non-zero.

(c) Show that f is either the zero function or there exists a positive number a such that f(x) = ax

for all real numbers x.

4. Let f : [0, 1] → R be differentiable function satisfying the conditions: f(0) = 0, |f ′(x)| ≤ |f(x)| for
all 0 < x < 1. Prove that f is the zero function.

5. Let f be a real-valued continuous function defined on [0, 1]. Show that

lim
n→∞

∫ 1

0

f(xn) dx = f(0).

6. Let A be a Lebesgue measurable subset of R with m(A) > 0, where m denotes the Lebesgue measure.

Show that for any 0 < δ < m(A) there exists a measurable subset B of A such that m(B) = δ. Hint:

consider the function f(x) = m(A ∩ [−x, x]) for all x > 0.



Analysis Qualifying Examination Fall 2011

Your Name: Your Z-Number:

In some cases partial credit may be given, but you should endeavor to fully complete as many

problems as possible.

1. Prove that the function f(x) =
√
x is uniformly continuous on [0,∞).

2. Let a < b. Suppose that the function f : [a, b] → R is bounded and Riemann integrable on [c, b] for

every a < c < b. Prove that f is Riemann integrable on [a, b] and
∫ b

a
f(x) dx = lim

c→a

∫ b

c
f(x) dx.

3. (a) Is there a closed uncountable subset of R which contains no rational numbers? Prove your

assertion. (b) Is there an infinite compact subset of Q? Prove your assertion. Here R denotes the

set of all real numbers equipped with the usual metric and Q is the set of all rational numbers.

4. Consider the power series
∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n) xn.

(a) Prove that the series converges for |x| < 1 and diverges for |x| > 1. (b) Investigate the convergence

and divergence of the series for x = ±1.

5. Let (X, d) be a metric space and let A and B be two nonempty subsets of X such that A ∩ B = ∅.
Prove that if A is closed and B is compact, then d(A,B) > 0, where d(A,B) denotes the distance

between A and B.

6. Let a1 = 0 and for every positive integer n ≥ 2, let

an =

∫ ∞

0

x
1
n

1 + x2
dx.

Show that the sequence {an} converges and find its limit.



ANALYSIS QUALIFYING EXAMINATION

January 10, 2011

Solutions to the problems are posted at http://math.fau.edu/AnQualifiers/anqua Jan2011sol.pdf

1. Let A,B be non-empty sets of real numbers such that a ≤ b for all a ∈ A, b ∈ B. Prove the following two statements
are equivalent:

(a) supA = inf B.

(b) For every ε > 0 there exist a ∈ A and b ∈ B such that b− a < ε.

2. Let f : [0,∞)→ R be uniformly continuous and assume that

lim
b→∞

∫ b

0

f(x) dx

exists and is finite. Prove that limx→∞ f(x) = 0.

3. Let ψ : R→ R be defined by

ψ(x) =

 0 if x < 0,
x if 0 ≤ x < 1,
1 if x ≥ 1.

Consider the series

∞∑
k=1

ψ(kx)

k(1 + kx2)
.

(a) Prove the series converges for all x ∈ R.

(b) Let f(x) =

∞∑
k=1

ψ(kx)

k(1 + kx2)
. Prove lim supx→0+ f(x) > 0.

Hint: f(x) ≥
n∑
k=1

ψ(kx)

k(1 + kx2)
; estimate for x = 1/n.

(c) Prove f is continuous on (−∞, 0) ∪ (0,∞) but discontinuous at 0.

4. Let A consist of all functions from [0, π] to R that are finite linear combinations of elements of the set {sin(nx) : n ∈ N};
that is, f ∈ A if and only if f(x) =

∑n
k=1 ak sin(kx) for some n ∈ N, a1, . . . , an ∈ R.

(a) Prove: If f : [0, π] → R is continuous and satisfies f(0) = f(π) = 0, then f can be approximated uniformly by a
sequence in A.

Hint: Add the constant function 1 to A; take it away again later on.

(b) Prove: If f : [0, π] → R is continuous and satisfies

∫ π

0

f(x) sinnx dx = 0 for all n ∈ N, then f(x) = 0 for all

x ∈ [0, π].

5. Let fn : R→ R be measurable for n = 1, 2, . . .. Let an =

∫
R
|fn| for n = 1, 2, . . . and assume that

∑∞
n=1 an <∞. Prove:

The series
∑∞
n=1 fn converges almost everywhere.

6. Compute, and justify your computation,

lim
n→∞

∫ 1

0

cos(xn)

1 + xn
dx.

http://math.fau.edu/AnQualifiers/anqua_Jan2011sol.pdf


Analysis Qualifier
August 19, 2010

INSTRUCTIONS:

• Write only on one side of each of the sheets you hand in. Anything written on the back of a sheet might be ignored.

• Write your name on each sheet.

• Write clearly. A completely solved problem is worth more than several problems left half done.

1. Let {an} be a sequence of real numbers and let S be the set of all limits of subsequences of {an}; that is, x ∈ S if
and only if x ∈ R and there exists a sequence of positive integers {nk} such that n1 < n2 < n3 < · · · and such that
lim
k→∞

ank
= x. Prove: S is a closed subset of R.

2. Let
∑∞

n=1 an be a convergent series of positive terms. Prove there exists a sequence of real numbers {cn} such that
limn→∞ cn = ∞ and such that

∑∞
n=1 cnan converges.

3. Consider the series

∞∑

k=1

x

k(1 + kx2)

(a) Prove the series converges for all x ∈ R.

(b) Let f(x) =

∞∑

k=1

x

k(1 + kx2)
. Prove f is continuous at all x 6= 0.

(c) Is f continuous at 0?

Hint: Accept or prove (depending on how much time you have left)

∞∑

k=1

1

k(1 + kx2)
≤ 1

1 + x2
+

∫ ∞

1

dt

t(1 + tx2)
.

But notice that the integral becomes infinite as x → 0. As an additional hint
1

t(1 + t2)
=

(
1

t
− x2

1 + x2t

)
. Do not

separate prematurely!

4. Let f : R → R be differentiable; assume that |f(x)| ≤ 1, |f ′(x)| ≤ 1 for all x ∈ R and that f(0) = 0. Let {an} be a
sequence of non zero real numbers. Prove: The sequence of functions

gn(x) =
1

an
f(anx)

has a subsequence converging to a continuous function.

5. Assume f : R → R and assume that {x ∈ R : f(x) ≥ r} is measurable for each rational number r. Prove that f is
measurable.

6. Assume f is Lebesgue integrable over the interval [0, 1]. Prove that

lim
n→∞

1

n

∫ 1

0

log
(
1 + enf(x)

)
dx =

∫

{x∈[0,1]:f(x)>0}
f(x) dx.

Hint: Prove that log(1 + et) ≤ log 2 + max(t, 0) for all t ∈ R.
7. Let K be a compact subset of R with Lebesgue measure m(K) = 1. Let

K0 =
⋂

{A : A is a compact subset of K and m(A) = 1}.
Prove m(K0) = 1 and if A is any proper compact subset of K0, then m(A) < 1.

Hint: Prove: The intersection of two, hence of any finite number, of compact subsets of K of measure 1, is again a
compact subset of measure 1. Use this to conclude that if V is open in R and K0 ⊂ V then V must contain some
compact subset of K of measure 1. Then use regularity of the Lebesgue measure; that is, use the fact that the measure
of any measurable set is the infimum of the measure of all open sets containing it.



Analysis Qualifying Examination Spring 2010

Complete as many problems as possible.

1. Construct a subset of [0, 1] which is compact, perfect, nowhere dense, and with positive Lebesgue

measure. (Be sure to prove your set has these four properties.)

2. [i] Suppose A,B are nonempty, disjoint, closed subsets of a metric space X. Show that the function

f : X → [0, 1] defined by

f(x) =
dist(x,A)

dist(x,A) + dist(x,B)

is continuous with f(x) = 0 for all x ∈ A, f(x) = 1 for all x ∈ B, and 0 < f(x) < 1 for all

x ∈ X \ (A ∪B).

[ii] Show that if X is a connected metric space with at least two distinct points, then X is uncountable.

3. [i] Let {an}n≥1 be a sequence of real numbers. Prove the Root Test: if lim supn→∞
n
√
|an| < 1, then∑

an is absolutely convergent, and if lim supn→∞
n
√
|an| > 1, then

∑
an is divergent.

[ii] Let cn = (the nth digit of the decimal expansion of π) + 1. Prove that the series
∑
cnx

n has

radius of convergence equal to 1.

4. Let {fn} be a sequence of continuously differentiable functions on [0, 1] with fn(0) = f ′n(0) and

|f ′n(x)| ≤ 1 for all x ∈ [0, 1] and n ∈ N. Show that if limn→∞ fn(x) = f(x) for all x ∈ [0, 1], then f is

continuous on [0, 1]. Must the sequence converge? Must there be a convergent subsequence?

5. Suppose that f, g, h : [a, b] → R satisfy f(x) ≤ g(x) ≤ h(x) for all x ∈ [a, b] and f(x0) = h(x0) for

some x0 ∈ (a, b). Prove that if f and h are differentiable at x0, then g is differentiable at x0 with

f ′(x0) = g′(x0) = h′(x0).

6. Compute

lim
n→∞

n∫
1

n( n
√
x− 1)

x3 log(x)
dx

7. Suppose f : [a, b]→ R is Riemann integrable on every subinterval [a + ε, b] for 0 < ε < b− a. Show

that if f is Lebesgue integrable on [a, b], then the (improper) Riemann integral exists on [a, b] and is

equal to the Lebesgue integral. Is the converse true?



FINAL DRAFT: Analysis Qualifying Examination Fall 2009

Complete as many problems as possible.

1. Let u : [a, b + 1] → R be a continuous function. For fixed τ ∈ [0, 1] define vτ : [a, b] → R by

vτ (t) = u(t+ τ). Show that {vτ | τ ∈ [0, 1]} is a compact subset of C([a, b],R).

2. Suppose A is a compact subset of Rn and f : A→ R is continuous. Prove that for every ε > 0 there

exists M > 0 such that |f(x)− f(y)| ≤M‖x− y‖+ ε.

3. Suppose U is an open subset of Rn and f : U → Rn is a homeomorphism. Prove that if f is uniformly

continuous, then U = Rn.

4. Suppose {Cn}n≥1 is a nested decreasing sequence of nonempty, compact, connected subsets of a

metric space. Prove that
⋂
n≥1Cn is nonempty, compact, and connected.

5. For p > 1 compute

lim
n→∞

1∫
0

xp

x2 + (1− nx)2
dx.

6. Let f : R → R be a Lebesgue integrable function, E ⊂ R a measurable set, and ω > 0. Define

ωE = {ωx | x ∈ E}.

[a] Show that m(ωE) = ωm(E).

[b] Show that the function g : E → R defined by g(x) = f(ωx) is Lebesgue integrable and

∫
E

f(ωx) dx =
1

ω

∫
ωE

f(x) dx.

7. Prove that if f : [0,∞)→ R is Lebesgue integrable, then

lim
n→∞

1

n
m

({
x ≥ n

∣∣∣∣ |f(x)| ≥ 1

n

})
= 0.



Analysis Qualifying Examination

January 5, 2009

Name (Please print)

1. Assume that {an} is a monotone decreasing sequence with an ≥ 0. If
∞∑

n=1

an <∞, show

that lim
n→∞

nan = 0. Is the converse true?

2. Let f : R→ R be defined by

f(x) =






x if x is irrational

p sin
1
q

if x =
p

q
in lowest terms (q > 0)

At what points is f continuous?

3. Let f(x) = (x2 − 1)n, and g = f (n) (i.e., the nth derivative of f .) Show that the polyno-
mial g has n distinct real roots, all in the interval [−1, 1].

4. Let X be a nonempty set, and for any two functions f, g ∈ RX (the set of all functions
from X to R) let

d(f, g) = sup
x∈X

|f(x)− g(x)|
1 + |f(x)− g(x)| .

Establish the following:

(a) (RX , d) is a metric space.

(b) A sequence {fn} ⊆ RX satisfies d(fn, f)→ 0 for some f ∈ RX if and only if {fn}
converges uniformly to f .

5. Let E =
{
(x, y) ∈ R2 : 9x2 + y4 = 1

}
. Show that E is compact and connected.

6. If
∫

A
f = 0 for every measurable subset A of a measurable set E, show that f = 0 a.e. in E.

7. Evaluate
lim

n→∞

∫

[0,1]

(
1− e−x2/n

)
x−1/2dx.



Analysis Qualifying Examination

August 21, 2008

Name (Please print)

1. If {xn} is a convergent sequence in a metric space, show that any rearrangement of {xn}
converges to the same limit.

2. Consider the series
∞∑

n=1

1
1 + xn

.

(a) Show that the series diverges for |x| < 1, and converges for |x| > 1.

(b) Let f(x) =
∞∑

n=1

1
1 + xn

. Find the set where f is continuous.

3. Let G be a non-trivial additive subgroup of R. Let

a = inf {x ∈ G : x > 0} .

Prove: If a > 0 then G = {na : n ∈ Z}, otherwise (i.e., if a = 0) G is dense in R.

4. Consider the function f : [−1, 1] −→ R defined by

f(x) =






x

2
+ x2 sin

(
1
x

)
, if x $= 0;

0, if x = 0.

Prove that f ′(0) is positive, but that f is not increasing in any open interval that contains
0.

5. For x ∈ [−1, 1] and n ∈ N, define

fn(x) =
x2n

1 + x2n
.

(a) Find a function f0 on [−1, 1] such that {fn} converges pointwise to f0.
(b) Determine whether {fn} converges uniformly to f0.
(c) Calculate

∫ 1
−1 f0(x)dx and determine whether

lim
n→∞

∫ 1

−1
fn(x)dx =

∫ 1

−1
f0(x)dx.

6. Let (X,A, µ) be a measurable space and {fn} a sequence of measurable functions. We
say that {fn} converges in measure to f if for every ε > 0,

lim
n→∞

µ ({x ∈ X : |fn(x)− f(x)| > ε}) = 0.

Show that if µ is a finite measure, and fn −→ f a.e., then fn −→ f in measure. Give an
example of a sequence which converges in measure, but does not converge a.e.

7. Show that
lim

n→∞

∫ n

0

(
1 +

x

n

)n
e−2xdx = 1.



Analysis Qualifying Examination Spring 2008

Complete as many problems as possible.

1. Let f(x) = sin

(
1

x

)
for x > 0. Prove that f is uniformly continuous on (a,∞) for every a > 0. Is f

uniformly continuous on (0,∞)? Justify your answer.

2. Let f be continuous on [0, 1] and differentiable in (0, 1) such that f(0) = f(1). Prove that there

exists 0 < c < 1 such that f ′(1− c) = −f ′(c).

3. Suppose X, Y are metric spaces, X is compact, and f : X → Y is a continuous bijection. Prove that

f is a homeomorphism.

4. Let C([0, 1], R) = {f | [0, 1] → R | f is continuous} be the metric space of continuous functions

on [0, 1] with the metric d(f, g) = ‖f − g‖∞ = supx∈[0,1] |f(x) − g(x)|. Show that the unit ball

{f ∈ C([0, 1], R) | ‖f‖∞ ≤ 1} is not compact.

5. Let f : [0, 1]→ R be continuously differentiable on [0, 1] with f(0) = 0. Prove that

sup
0≤x≤1

|f(x)| ≤
1∫

0

|f ′(x)| dx ≤




1∫

0

|f ′(x)|2 dx





1
2

6. Compute

lim
n→∞

1∫

0

3
√

1 + xn sin(nx) dx.

Justify your answer.

7. Let f : R → R be Lebesgue integrable on R. Prove that

lim
h→0

∫

R

|f(x + h)− f(x)| dx = 0.



Analysis Qualifying Examination Fall 2007

Name: Last Four Digits of Your Student Number:

In some cases partial credit may be given, but you should endeavor to fully complete as many

problems as possible.

1. Give an example of a sequence of Riemann integrable functions fn : [0, 1] → R for which fn → 0

pointwise on [0,1] but

lim
n→∞

∫ 1

0

fn(x) dx "= 0.

2. Let k be a fixed positive integer, and let A be the set of all polynomials of the form

p(x) = akx
k + ak+1x

k+1 + · · · + anx
n, where n ∈ N, n ≥ k, and ai ∈ R.

Prove that A is dense in C[a, 1] for every 0 < a < 1. Is it also dense in C[0, 1]? Prove your conclusion.

3. (a) Suppose that f : [a, b] → R is differentiable, and that f ′ is bounded on [a, b]. Prove that f is of

bounded variation on [a, b]. (b) Define f(x) = x2 cos(1/x) for 0 < x ≤ 1 and f(0) = 0. Using (a),

prove that f is of bounded variation on [0, 1].

4. Let U be an open subset of Rn and let f : U → Rm. (a) State the definition that f is differentiable

at p ∈ U . (b) Show that every linear transformation T : Rn → Rm is differentiable at every p ∈ Rn.

What is the derivative of T at p?

5. Define f : [0, 1] → R by

f(x) =

{
0, if x is rational

x2, if x is irrational

Prove that f is not Riemann integrable on [0, 1] but it is Lebesgue integrable on [0, 1]. Find the

Lebesgue integral of f .

6. Let X be a compact metric space and let {fn} be a sequence of isometries on X. Prove that there

exists a subsequence {fnk
} that pointwise converges to an isometry f on X. Recall that f : X → X

is called an isometry if d(f(x), f(y)) = d(x, y) for all x, y ∈ X, where d is the metric on X.
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