Dividing

For any two integers \(a, b \) with \(b > 0 \) there is only one pair \((q, r)\) such that

\[
\begin{align*}
\bullet & \quad a = q \cdot b + r \\
\bullet & \quad 0 \leq r < b
\end{align*}
\]

A way to determine \(q, r \) for given \(a \) and \(b \): If \(b \mid a \), then \(a = \frac{a}{b} \cdot b \) for some \(\frac{a}{b} \in \mathbb{Z} \). In this case \(q = \frac{a}{b} \) and \(r = 0 \).

We consider the case where \(b \) do not divides \(a \). Note that \(a \) can be positive, or 0, or negative (\(b \) is always positive).

Case I. \(a \geq 0 \) (Example: \(a = 23 \) and \(b = 5 \).) In this case we have that the fraction \(\frac{a}{b} \) can be written as a decimal, i.e.

\[
\frac{a}{b} = (\text{integer part of } \frac{a}{b}).(\text{fractional part of } \frac{a}{b})
\]

(Example: \(\frac{23}{5} = 4.6 \), here (integer part of \(\frac{23}{5} \)) is 4, and (fractional part of \(\frac{23}{5} \)) is 6)

In this case

\[
q = (\text{integer part of } \frac{a}{b}) \quad \text{and} \quad r = a - q \cdot b
\]

(Example: \(\frac{23}{5} = 4.6 = 4 \cdot \frac{5}{b} + \frac{3}{r} \))

(Example: \(a = 24 \) and \(b = 32 \), then \(\frac{24}{32} = 0.75 \), thus \(q = 0 \) and \(r = 24 - 0 \cdot 32 = 24 \). Therefore \(\frac{24}{a} = \frac{0}{q} \cdot \frac{32}{b} + \frac{24}{r} \))

Case II. \(a < 0 \) (Example: \(a = -23 \) and \(b = 5 \)) In this case

\[
q = (\text{integer part of } \frac{a}{b}) - 1 \quad \text{and} \quad r = a - q \cdot b
\]
(Example: \(\frac{-23}{5} = -4.6 \), here (integer part of \(\frac{23}{4} \)) is \(-4\). Therefore \(q = -4 - 1 = -5 \), thus \(\overline{23} = \overline{5} \cdot \overline{5} + \overline{2} \).)

35.1

a. \(q = 33 \) and \(r = 1 \), because

\[100 = \overline{33} \cdot \overline{3} + \overline{1} \]

\[0 \leq \frac{1}{r} < \frac{3}{b} \]

b. \(q = -34 \) and \(r = 2 \), because

\[-100 = \overline{-34} \cdot \overline{3} + \overline{2} \]

\[0 \leq \frac{2}{r} < \frac{3}{b} \]

c. \(q = 33 \) and \(r = 0 \), because

\[99 = \overline{-33} \cdot \overline{3} + \overline{0} \]

\[0 \leq \frac{0}{r} < \frac{3}{b} \]

d. \(q = -33 \) and \(r = 0 \), because

\[-99 = \overline{-33} \cdot \overline{3} + \overline{0} \]

\[0 \leq \frac{0}{r} < \frac{3}{b} \]

e. \(q = 0 \) and \(r = 0 \), because

\[0 = \overline{0} \cdot \overline{3} + \overline{0} \]

\[0 \leq \frac{0}{r} < \frac{3}{b} \]
Definition. Let $a, b \in \mathbb{Z}$ with $b > 0$

there is only one pair (q, r) such that

- $a = qb + r$
- $0 \leq r < b$

We define the operations div and mod by

$$a \text{ div } b = q \quad \text{and} \quad a \mod b = r$$

35.2

a. Since $100 = \frac{33 \cdot 3}{q} + \frac{1}{r}$ we have

$$100 \text{ div } 3 = 33 \quad \text{and} \quad 100 \mod 3 = 1$$

b. Since $-100 = \frac{-34 \cdot 3}{q} + \frac{2}{r}$ we have

$$-100 \text{ div } 3 = -34 \quad \text{and} \quad -100 \mod 3 = 2$$

c. Since $99 = \frac{-33 \cdot 3}{q} + \frac{0}{r}$ we have

$$99 \text{ div } 3 = 33 \quad \text{and} \quad 99 \mod 3 = 0$$

d. Since $-99 = \frac{-33 \cdot 3}{q} + \frac{0}{r}$ we have

$$-99 \text{ div } 3 = -33 \quad \text{and} \quad -99 \mod 3 = 0$$

e. Since $0 = \frac{0 \cdot 3}{q} + \frac{0}{r}$ we have

$$0 \text{ div } 3 = 0 \quad \text{and} \quad 0 \mod 3 = 0$$

35.3

a. $N = 17, 18, 19, 20$, because

- $100 = 5 \cdot 17 + 15$ implies $100 \text{ div } 17 = 5$,
- $100 = 5 \cdot 18 + 10$ implies $100 \text{ div } 18 = 5$,
• $100 = 5 \cdot 19 + 5$ implies $100 \div 19 = 5$,
• $100 = 5 \cdot 20 + 0$ implies $100 \div 20 = 5$.

b. $N = 50, 51, 52, \ldots, 59$.

c. $N = 19, 95$

d. $N = 15, 25, 35, 45, \ldots$, because
• $15 = 1 \cdot 10 + 5$ implies $15 \mod 10 = 5$,
• $25 = 2 \cdot 10 + 5$ implies $25 \mod 10 = 5$,
• $35 = 3 \cdot 10 + 5$ implies $35 \mod 10 = 5$,
• $45 = 4 \cdot 10 + 5$ implies $45 \mod 10 = 5$.

:

e. $N = -24, -23, -22, -21, -20$

35.4

a. Let a, b be positive integers.
If $a \mod b = b \mod a$, then $a = b$.
We will show: "If $a \neq b$, then $a \mod b \neq b \mod a$.”
The proof of this statement is statement is logically equivalent to the proof of the statement
" If $a \mod b = b \mod a$, then $a = b$.”
Proof. If $a \neq b$, then $a < b$, or $a > b$.
Case $a < b$. Then $a = 0 \cdot b + \underbrace{a}_{\text{mod } b}$, therefore $a \mod b = a$ while $b = \overbrace{\tilde{q} \cdot a + \overbrace{\tilde{r} = a \mod b}^{b \text{ mod } a}}^{b \mod a}$ and $\tilde{r} < a$. Therefore $a \mod b \neq b \mod a$.
Case $a > b$. Then $b \mod a = b$ while $a \mod b < b$. Therefore $a \mod b \neq b \mod a$.

b. Let a, b be positive integers.
If $a \div b = b \div a$, then $a = b$.
We will show: "If $a \neq b$, then $a \div b \neq b \div a$.”
The proof of this statement is statement is logically equivalent to the proof of the statement
" If $a \div b = b \div a$, then $a = b$.”
Proof. If \(a \neq b \), then \(a < b \), or \(a > b \).

Case \(a < b \). Then \(a = 0 \cdot b + \frac{a}{q} \), therefore \(a \div b = 0 \) while \(b = q \cdot a + r \) and \(r < a \). Because \(a < b \) we have \(q \neq 0 \) (otherwise \(b = 0 \cdot a + b \) would implie \(b < a \), however by the assumption \(a < b \)). Thus \(b \div a \neq 0 \) Therefore \(a \div b \neq b \div a \).

Case \(a > b \). Analogous

35.5

a. Let \(a, b \) be positive integers.

The statement ”If \(a < b \), then \(a \div c < b \div c \)” is not true:

Counterexample. \(a = 11, b = 12, \) and \(c = 5 \). Then \(a < b \), but \(a \div c = b \div c \).

b. Let \(a, b \) be positive integers.

The statement ”If \(a < b \), then \(a \mod c < b \mod c \)” is not true:

Counterexample. \(a = 9, b = 11, \) and \(c = 10 \). Then \(a < b \), but \(a \mod c \neq b \mod c \).