Modular Arithmetic

Recall: Let \(n \in \mathbb{Z} \) such that \(n > 0 \) and \(a \in \mathbb{Z}_n \).

- An element \(a \in \mathbb{Z}_n = \{0, 1, \ldots, n - 1\} \) is invertible if and only if \(\gcd(a, n) = 1 \).
- If \(\gcd(a, n) = 1 \), then there exist integers \(x, y \) such that
 \[
 1 = a \cdot x + n \cdot y
 \]
- If \(1 = a \cdot x + n \cdot y \) and \(b = x \mod n \), then \(a \otimes b = 1 \).

1. Determine all invertible elements in
 (1) \(\mathbb{Z}_7 \).
 (2) \(\mathbb{Z}_{13} \).
 (3) \(\mathbb{Z}_{24} \).
 (4) \(\mathbb{Z}_{25} \).

2. Determine the reciprocal of any invertible element \(a \) from 1. (i.e. for each invertible element \(a \) from 1. find \(b \) in the given number system such that \(a \otimes b = 1 \).)

3. For each invertible element \(a \) from 1. find \(c \) in the given number system such that \(a \otimes c = 3 \).

4. For each not invertible element \(a \) from 1. find \(c \neq 0 \) in the given number system such that \(a \otimes c = 0 \).