Wording of Final Conclusion

- **Start**
 - Does the original claim contain the condition of equality?
 - Yes: (Original claim contains equality) → Do you reject H_0?
 - Yes: (Reject H_0) → "There is sufficient evidence to warrant rejection of the claim that . . . (original claim)."
 - No: (Fail to reject H_0) → "There is not sufficient evidence to warrant rejection of the claim that . . . (original claim)."
 - No: (Original claim does not contain equality and becomes H_1) → Do you reject H_0?
 - Yes: (Reject H_0) → "The sample data support the claim that . . . (original claim)."
 - No: (Fail to reject H_0) → "There is not sufficient sample evidence to support the claim that . . . (original claim)."

(This is the only case in which the original claim is rejected)
(This is the only case in which the original claim is supported)
8.3: Assumptions for Testing Claims About Population Means

1) The sample is a simple random sample.

2) The value of the population standard deviation σ is known or unknown.

3) Either or both of these conditions is satisfied: The population is normally distributed or $n > 30$.
Test Statistic for Testing a Claim About a Mean

with σ Known

$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$

P-values and Critical Values
- Found in Table A-2

with σ Not Known

$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$

P-values and Critical Values
- Found in Table A-3
- Degrees of freedom (df) = $n - 1$
Review: Finding P-values.

1. Start
2. What type of test?
 - Two-tailed
 - Right-tailed
 - Left-tailed
3. Is the test statistic to the right or left of center?
 - Left
 - P-value = area to the left of the test statistic
 - Right
 - P-value = twice the area to the right of the test statistic
4. P-value
5. P-value is twice this area.
6. Test statistic

Slide 4
Example 1: A sample of 106 body temperatures gives a sample mean of 98.20°F. Assume that the sample is a simple random sample and that the population standard deviation \(\sigma \) is known to be 0.62°F. Use a 0.05 significance level to test the common belief that the mean body temperature of healthy adults is equal to 98.6°F. Use the \(P \)-value method.

\[
\begin{align*}
H_0: \mu & = 98.6 \\
H_1: \mu & \neq 98.6 \\
\alpha & = 0.05 \\
x & = 98.2 \\
\sigma & = 0.62
\end{align*}
\]

\[
z = \frac{\overline{x} - \mu_x}{\frac{\sigma}{\sqrt{n}}} = \frac{98.2 - 98.6}{\frac{0.62}{\sqrt{106}}} = -6.64
\]
\[H_0: \mu = 98.6 \]
\[H_1: \mu \neq 98.6 \]
\[\alpha = 0.05 \]
\[\bar{x} = 98.2 \]
\[\sigma = 0.62 \]

This is a two-tailed test and the test statistic is to the left of the center, so the \(P \)-value is twice the area to the left of \(z = -6.64 \). We refer to Table A1 to find the area to the left of \(z = -6.64 \) is 0.0001, so the \(P \)-value is \(2(0.0001) = 0.0002 \).

Because the \(P \)-value of 0.0002 is less than the significance level of \(\alpha = 0.05 \), we reject the null hypothesis.

There is sufficient evidence to conclude that the mean body temperature of healthy adults differs from 98.6°F.
Example: Use the Traditional method.

\[H_0: \mu = 98.6 \]
\[H_1: \mu \neq 98.6 \]
\[\alpha = 0.05 \]
\[\bar{x} = 98.2 \]
\[\sigma = 0.62 \]
\[z = -6.64 \]

We now find the critical values to be \(z = -1.96 \) and \(z = 1.96 \). We would reject the null hypothesis, since the test statistic of \(z = -6.64 \) would fall in the critical region.

There is sufficient evidence to conclude that the mean body temperature of healthy adults differs from 98.6°F.
Example: Use the Confidence Interval method.

\[H_0: \mu = 98.6 \]
\[H_1: \mu \neq 98.6 \]
\[\alpha = 0.05 \]
\[\bar{x} = 98.2 \]
\[\sigma = 0.62 \]

For a two-tailed hypothesis test with a 0.05 significance level, we construct a 95% confidence interval. Use the methods of Section 7.3 to construct a 95% confidence interval:

\[98.08 < \mu < 98.32 \]

We are 95% confident that the limits of 98.08 and 98.32 contain the true value of \(\mu \), so it appears that 98.6 cannot be the true value of \(\mu \).
Example 2:

A premed student in a statistics class is required to do a class project. She plans to collect her own sample data to test the claim that the mean body temperature is less than 98.6°F. After carefully planning a procedure for obtaining a simple random sample of 12 healthy adults, she measures their body temperatures and obtains the sample mean 98.39 and the sample standard deviation .535. Use a 0.05 significance level to test the claim these body temperatures come from a population with a mean that is less than 98.6°F.

(a) Use the Traditional method.
(b) Use p-value approach
Example 2:

\[H_0: \mu = 98.6 \]
\[H_1: \mu < 98.6 \]
\[\alpha = 0.05 \]
\[x = 98.39 \]
\[s = 0.535 \]
\[n = 12 \]
\[-t_{0.05,11} = -1.796 \]

\[t = \frac{x - \mu}{s} = \frac{98.39 - 98.6}{0.535} = -1.360 \]

(a) Use the Traditional method. Because the test statistic of \(t = -1.360 \) does not fall in the critical region, we fail to reject \(H_0 \). There is not sufficient evidence to support the claim that the sample comes from a population with a mean less than 98.6°F.

(b) \(p\text{-value} = P(t_{11} < -1.360) > P(t_{11} < -1.796) = 0.05 \), hence fail to reject \(H_0 \) at 0.05 significance level. There is not sufficient evidence to support the claim that the sample comes from a population with a mean less than 98.6°F.
Example 3: Find p-values

Assuming that neither software nor a TI-83 Plus calculator is available, use Table A-3 to find a range of values for the P-value corresponding to the following given results.

a) In a left-tailed hypothesis test, the sample size is $n = 12$, and the test statistic is $t = -2.007$.

b) In a right-tailed hypothesis test, the sample size is $n = 12$, and the test statistic is $t = 1.222$.

c) In a two-tailed hypothesis test, the sample size is $n = 12$, and the test statistic is $t = -3.456$.
Solution:

Assuming that neither software nor a TI-83 Plus calculator is available, use Table A-3 to find a range of values for the P-value corresponding to the given results.

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>Area in One Tail</th>
<th>Area in Two Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.005 0.01 0.025 0.05 0.10</td>
<td>0.01 0.02 0.05 0.10 0.20</td>
</tr>
<tr>
<td>11</td>
<td>3.106 2.718 2.201 1.796 1.363</td>
<td></td>
</tr>
</tbody>
</table>
Solution (a):

a) The test is a left-tailed test with test statistic $t = -2.007$, so the P-value is the area to the left of -2.007. Because of the symmetry of the t distribution, that is the same as the area to the right of $+2.007$. Any test statistic between 2.201 and 1.796 has a right-tailed P-value that is between 0.025 and 0.05. We conclude that $0.025 < P$-value < 0.05.
Solution (b):

b) The test is a right-tailed test with test statistic $t = 1.222$, so the P-value is the area to the right of 1.222. Any test statistic less than 1.363 has a right-tailed P-value that is greater than 0.10. We conclude that P-value > 0.10.
Solution (c):

c) The test is a two-tailed test with test statistic $t = -3.456$. The P-value is twice the area to the right of -3.456. Any test statistic greater than 3.106 has a two-tailed P-value that is less than 0.01. We conclude that P-value < 0.01.