LA Session Week 8 (MAC 2311)

Name:

1. Evaluate the derivatives of the following functions:

 (a) \(f(x) = \sin^{-1}(\ln x) \)
 (b) \(f(x) = \tan^{-1}(2x^2 - 4) \).

 \[\frac{d}{dx} \sin^{-1}(\ln x) = \frac{1}{\sqrt{1 - (\ln x)^2}} \cdot \frac{1}{x} \]

 \[\frac{d}{dx} \tan^{-1}(2x^2 - 4) = \frac{4x}{1 + (2x^2 - 4)^2} \]

2. The legs of an isosceles right triangle increase in length at a rate of 2 m/s.
(a). At what rate is the area of the triangle changing when the legs are 2 m long?
(b). At what rate is the area of the triangle changing when the hypotenuse is 1 m long?
(c). At what rate is the length of the hypotenuse changing?

Solution (a). Let \(x \) be the length of a leg of an isosceles right triangle, \(h \) be the length of the hypotenuse.

The area is \(A(x) = \frac{1}{2} x^2 \). It is given that \(\frac{dx}{dt} = 2 \text{ m/s} \).

Then, \(\frac{dA}{dt} = \frac{dA}{dx} \cdot \frac{dx}{dt} = x \cdot \frac{dx}{dt} = 2x \text{ m}^2/\text{s} \).

When \(x = 2 \text{ m} \), we have \(\frac{dA}{dt} = 4 \text{ m}^2/\text{s} \), so the area is increasing at 4 square meters per second.

(b) when \(h = 1 \text{ m} \), then \(x^2 = \frac{1}{2} h^2 = \frac{1}{2} \) m \(x = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2} \) m.

So, \(\frac{dA}{dt} = 2 \cdot \left(\frac{\sqrt{2}}{2} \right) = \sqrt{2} \text{ m}^2/\text{s} \).

(c) Since \(h^2 = x^2 + x^2 = 2x^2 \), it gives \(h = \sqrt{2} x \).

So, \(\frac{dh}{dt} = \sqrt{2} \cdot \frac{dx}{dt} = \sqrt{2} \cdot (2) = 2\sqrt{2} \text{ m/s} \).
3. Let \(f(x) = x^4 - 2x^3 + 1 \).
(a) Find the critical points of \(f \).
(b) Find the intervals on which \(f \) is increasing and decreasing.
(c) Find the local maximum and minimum values of \(f \).
(d) Find the intervals on which \(f \) is concave up or concave down.
(e) Identify any inflection points.

Solution. (a) \(f'(x) = 4x^3 - 6x^2 = 2x^2(2x-3) \). Solve \(f'(x) = 0 \), we have \(x = 0 \) and \(x = \frac{3}{2} \). So, \(x = 0 \) and \(x = \frac{3}{2} \) are the critical points of \(f \).

(b) Note that the two critical points divide the domain \((\infty, 0) \cup (0, \frac{3}{2}) \cup \left(\frac{3}{2}, \infty\right)\) into three subintervals \((-\infty, 0), (0, \frac{3}{2})\), and \(\left(\frac{3}{2}, \infty\right)\).

\[
\begin{array}{cccc}
\text{Interval} & f' & f' & f \\
(-\infty, 0) & + & - & - \quad \text{decreasing} \\
(0, \frac{3}{2}) & + & - & - \quad \text{decreasing} \\
\left(\frac{3}{2}, \infty\right) & + & + & + \quad \text{increasing} \\
\end{array}
\]

(c) \(f' \) is negative on both sides near \(x = 0 \), so \(f \) has no local extreme value at \(x = 0 \). \(f' \) changes sign from negative to positive as \(x \) increases through \(x = \frac{3}{2} \), so \(f \) has a local minimum.

Value of \(f'\left(\frac{3}{2}\right) = \left(\frac{3}{2}\right)^4 - 2\left(\frac{3}{2}\right)^3 + 1 = -\frac{11}{16} \).

(d) \(f''(x) = 12x^2 - 12x = 12x(x-1) \). \(f''(x) = 0 \) at \(x = 0 \) and \(x = 1 \).

\[
\begin{array}{cccc}
\text{Interval} & f'' & f \\
(-\infty, 0) & - & + \quad \text{concave up} \\
(0, 1) & + & - \quad \text{concave down} \\
(1, \infty) & + & + \quad \text{concave up} \\
\end{array}
\]

(e) Since \(f'' \) changes sign at \(x = 0 \) and \(x = 1 \), there are inflection points at \(x = 0 \) and \(x = 1 \).