(1) (15 pts.) Complete the following definitions.
 (a) If G is a group and H is a non-empty subset of G, then we say H is a subgroup of G if . . .
 (b) If G is a group and $x \in G$, the cyclic subgroup generated by x is . . .
 (c) A homomorphism of rings is . . .

(2) (10 pts.) Let G be a finite group and $x \in G$. Prove: If H is a subgroup of G, then the sets xH and H have the same number of elements.

(3) (10 pts.) Prove: If G is a finite abelian group of order n and $x \in G$, then $x^n = e$.

(4) (10 pts.) Give an example of each of the following. Proofs are not required, nevertheless, be specific and describe your examples carefully. If an example does not exist, say so.
 (a) A field of characteristic zero.
 (b) A field of characteristic 21.
 (c) A field of characteristic 23.
 (d) An abelian group of order 99.
 (e) A non-abelian group.
 (f) A group of order 7 containing an element of order 2.

(5) (15 pts.)
 (a) Compute the order of 225 in $\mathbb{Z}/14$.
 (b) Compute the order of 225 in $\mathbb{Z}/11$.
 (c) Use the answers in parts (a) and (b) to compute the order of 225 in $\mathbb{Z}/154$.
 (d) Use the answer in part (c) to find the remainder when $(225)^{241}$ is divided by 154.

(6) (20 pts.) Let R denote the ring $\text{Mat}_2(\mathbb{Z}/2)$ of two-by-two matrices over $\mathbb{Z}/2$.
 (a) What is the characteristic of R?
 (b) For each $x \in R$, compute x^2.
 (c) List the group of units of R. For each unit x, find the order of x.
 (d) True or false? If x has order 2 and y has order 2, then xy has order 2.
 (e) List the set of zero divisors of R.

(7) (20 pts.) Let $G = U_{16}$ be the group of units in the ring $\mathbb{Z}/16$.
 (a) List the elements in G.
 (b) Compute the order of each element of G.
 (c) True or false? If x has order 2 and y has order 2, then xy has order 2.
 (d) Let H be the subset of G consisting of all elements of order 1 or 2. Show that H is a subgroup of G.