(1) (20 points) Complete the following definitions.
 (a) Let G be a group and H a subset of G. We say H is a **subgroup** if
 (b) Let R and S be rings. A **homomorphism** from R to S is
 (c) If G is a group, a is an element of G, and $d > 0$, we say a has order d if
 (d) Let R be a ring. The **characteristic** of R is

(2) (15 points) Let $G = Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group of order 8. Answer the following:
 (a) For each $x \in G$, find the order of x.
 (b) Find a subgroup H of order 2 and find the partition of G into left cosets of H.
 (c) Let $H = \langle i \rangle$ be the subgroup generated by i. Find the partition of G into left cosets of H.

(3) (10 points) Let G be an abelian group and a and b elements of G. Assume $|a| = 2$ and $|b| = 3$.
 (a) List the elements in the subgroup $\langle ab \rangle$.
 (b) Find the order of the element ab.

(4) (10 points) Give an example for each of the following. If none exists, say so.
 (a) A field of order 4.
 (b) A field of characteristic 4.
 (c) A field of characteristic 0.
 (d) A ring of order 4 which is not a field.
 (e) A non-commutative ring of characteristic 2.
 (f) An abelian group of order 144.

(5) (20 points) Let G be a finite group and $x \in G$. Prove the following.
 (a) $x^n = e$ for some positive integer n.
 (b) The order of x is equal to the number of elements in the subgroup generated by x.

(6) (10 points) Let G be a finite group, H a subgroup of G, and $x \in G$. Prove the following.
 (a) The left coset xH has the same number of elements as H.
 (b) The sets xG and G are equal.

(7) (15 points) Let p be a prime number and G a group of order p.
 (a) Use Lagrange’s Theorem to prove that the order of any x in G is equal to 1 or p.
 (b) Use part (a) to show that a ring R of order p has characteristic p.