Do not simplify your answers. Some answers will involve fractions, π, etc.

1. (20 pts.) Let D denote the solid region inside both the ellipsoid $4x^2 + 4y^2 + z^2 = 64$ and the cylinder $x^2 + y^2 = 4$. Express the integral

$$\iiint_D (x^2 + y^2) dV$$

as an iterated integral in

(a) rectangular coordinates.
(b) cylindrical coordinates.

Do not evaluate.

2. (15 pts.) Let R be the triangular region in the (x,y)-plane with vertices $(0,0)$, $(-1,0)$, and $(0,2)$. Let S be the part of the surface $z = 2 + 3x^2 + 2y^3$ that lies above R.

(a) Draw a sketch in the (x,y) plane, clearly showing the region R.
(b) Let E be the solid region below S and above R. Write an iterated integral for the volume of E. Do not evaluate.
(c) Write an iterated integral whose value is equal to the surface area of S. Do not evaluate.

3. (25 pts.) Let S denote the part of the paraboloid $z = a^2 - x^2 - y^2$ that lies above the circle $y^2 = x(a-x)$, where $a > 0$ is a constant. Let D denote the solid region under S and above the (x,y)-plane.

(a) Write iterated integrals in rectangular coordinates for:
 (i) the volume of D.
 (ii) the surface area of S.
 Do not evaluate.
(b) Write both of the integrals of part (a) as iterated integrals in cylindrical coordinates. Do not evaluate.

4. (25 pts.) Let R be the region in the (x,y)-plane bounded by $y = x^2$ and $y = x + 2$. The density function is $\rho(x,y) = x$.

(a) Draw a sketch, clearly showing the region R.
(b) Find M, the mass of R.
(c) Find \bar{x}, the x coordinate of the centroid of R.

5. (15 pts.) Let E be the solid region inside between the two concentric spheres $x^2 + y^2 + z^2 = 25$ and $x^2 + y^2 + z^2 = 36$. Express the integral

$$\iiint_E x^2 + y^2 dV$$

as an iterated integral in spherical coordinates. Evaluate the integral.