Do not simplify your answers. Some answers will involve square roots, fractions, \(\pi\), \(e\), etc..

(1) (20 pts.) For the function
\[f(x, y) = x \ln(xy + 7) + y \]
and the point \(P_0 = (3, -2) \), do the following.
(a) Find \(\nabla f \), the gradient function.
(b) Find \(\nabla f(P_0) \), the gradient of \(f \) at \(P_0 \).
(c) Find the linearization of \(f \) at the point \(P_0 \).
(d) Use differentials to approximate \(f(3.01, -2.01) \).

(2) (20 pts.) Let \(P_0 = (-1, 2) \), \(\mathbf{v} = (-4, 3) \), and let \(f \) be the function
\[f(x, y) = \frac{x}{(x + y)^2} \]
(a) Find \(\nabla f \), the gradient function.
(b) Find \(\nabla f(P_0) \), the gradient of \(f \) at \(P_0 \).
(c) Find the maximum rate of change of \(f \) at \(P_0 \).
(d) Find the directional derivative of \(f \) at \(P_0 \) in the direction of \(\mathbf{v} \).

(3) (20 pts.) Answer the following, for the point \(P_0 = (\pi/3, 2) \) and the function
\[f(x, y) = \tan \frac{x}{y} \]
(a) Find the gradient function \(\nabla f \).
(b) Find the gradient of \(f \) at \(P_0 \).
(c) Find the equation of the tangent plane at the point \(P_0 \).
(d) Find the equation of the normal line at the point \(P_0 \).

(4) (20 pts.) For the function
\[f(x, y) = xy^2 - 2x^3 - y^2 + 2x^2 \]
find all critical points. Classify each critical point as a local maximum, local minimum or saddle point.

(5) (20 pts.) Use the method of Lagrange to find the point on the plane
\[x - 2y + 3z = 8 \]
that is closest to the point \(P_0 = (-1, 1, 3) \).