Do not simplify your answers. Some answers will involve square roots, fractions, \(e\), \(\pi\), et cetera. Unless specified otherwise, always assume up means in the \(z\)-direction, and positive orientation is with respect to the right-hand rule.

(1) (20 pts.) Items (a) – (d) refer to the two vectors
\[
\mathbf{u} = (1, -3, -4) \\
\mathbf{v} = (-1, 1, 2)
\]

(a) Find \(\mathbf{u} \cdot \mathbf{v}\).
(b) Find \(\mathbf{u} \times \mathbf{v}\).
(c) Find \(\text{proj}_\mathbf{v} \mathbf{u}\), the vector projection of \(\mathbf{u}\) onto \(\mathbf{v}\).
(d) Find the area of the parallelogram determined by \(\mathbf{u}\) and \(\mathbf{v}\).

(2) (20 pts.) For the parametric space curve \(C\) defined by
\[
\mathbf{r}(t) = (e^t, t + 1, t^2), \quad 0 \leq t \leq 1,
\]
answer the following.
(a) Set up, but do not evaluate, an integral giving the length of \(C\).
(b) Evaluate the line integral
\[
\int_C y\,dx + x\,dy + dz
\]

(3) (30 pts.) Let \(P_0 = (1, 1), \mathbf{v} = (-1, 1)\), and let \(f\) be the function
\[
f(x, y) = 3x - e^{x^2} + y^2
\]
(a) Find \(\nabla f\), the gradient function of \(f\).
(b) Find \(\nabla f(P_0)\), the gradient of \(f\) at \(P_0\).
(c) Find the linearization of \(f\) at the point \(P_0\).
(d) Find the directional derivative of \(f\) at \(P_0\) in the direction of \(\mathbf{v}\).

(4) (20 pts.) For the function
\[
f(x, y) = (x^2 - x)y + y^2
\]
find all critical points. Classify each critical point as a local maximum, local minimum or saddle point.

(5) (10 pts.) Use the method of Lagrange to find the minimum and maximum values of
\[
f(x, y) = 2x - 3y - 1
\]
subject to the constraint
\[
x^2 + y^2 \leq 4.
\]
(6) (30 pts.) Let \(R \) be the square region in \(\mathbb{R}^2 \) defined by
\[-1 \leq x \leq 1 \text{ and } -1 \leq y \leq 1\]
Let \(S \) be the portion of the surface
\[z = (x - 1)(y + 1) \]
where the \((x, y)\) points are constrained to \(R \).
(a) Write the surface area of \(S \) as a double integral. Do not evaluate.
(b) For the vector field
\[\mathbf{F} = \langle x - 1, y + 1, z \rangle \]
evaluate the upward flux of \(\mathbf{F} \) through \(S \).
(c) Let \(C \) denote the boundary curve of \(S \), oriented in the positive direction. Calculate the work done by the force field
\[\mathbf{F} = \langle z, x, y \rangle, \]
on an object making one loop around \(C \).

(7) (40 pts.) Let \(E \) denote the solid cone in \(\mathbb{R}^3 \) defined by the inequalities
\[\sqrt{x^2 + y^2} \leq z \leq 1 \]
(a) Set up, but do not evaluate, triple integrals for the volume of \(E \),
(i) in rectangular coordinates,
(ii) in cylindrical coordinates, and
(iii) in spherical coordinates.
(b) For the vector field
\[\mathbf{F} = \langle x + xz, y + xy, z + yz \rangle, \]
do the following.
(i) Calculate the upward flux of \(\mathbf{F} \) through the top surface of \(E \).
(ii) Calculate the outward flux of \(\mathbf{F} \) through the boundary surface of \(E \).

(8) (20 pts.) Let \(C \) denote the triangle in \(\mathbb{R}^2 \) with vertices \((0, 0), (3, 1), (0, 1)\), with positive orientation. Let
\[\mathbf{F} = \langle xy - x, y + 3x \rangle. \]
(a) Compute the work done by \(\mathbf{F} \) on an object making one loop around \(C \).
(b) Compute the outward flux of \(\mathbf{F} \) through \(C \).

(9) (10 pts.) Show that the line integral
\[\int_C (y + 2x)dx + (2 + x + \cos y)dy \]
is path independent. Evaluate the line integral, if \(C \) is any path from \(A = (1, 0) \) to \(B = (2, \pi/2) \).