Write your complete solutions on the answer sheets. Do not write on this test paper.

(1) (20 points) Sketch the region \(R \) in the \(xy \)-plane bounded by the two curves \(y = x^2 \) and \(x = y^2 \). Using double iterated integrals, do the following.
 (a) Find the area of \(R \).
 (b) Find the centroid of \(R \).

(2) (20 points) Sketch the two curves \(y = x \) and \((x - 1)^2 + y^2 = 1\) and identify the points of intersection. Let \(R \) denote the smaller of the two regions bounded by the curves.
 (a) Express the area of \(R \) as an iterated integral in \((x, y)\)-coordinates. Do not evaluate.
 (b) Express the area of \(R \) as an iterated integral in \((r, \theta)\)-coordinates. Do not evaluate.

(3) (10 points) Let \(S \) denote the solid region in the first octant of \(xyz \)-space that lies between the two planes \(2x + 2y + z = 2 \) and \(x + y + z = 1 \). Set up, but do not evaluate, a triple iterated integral for the volume of \(S \).

(4) (20 points) Let \(S \) denote the solid region in \(xyz \)-space that lies between the plane \(z = 0 \) and the paraboloid \(z = 9 - x^2 - y^2 \). Set up, but do not evaluate, the following.
 (a) A triple iterated integral for the volume of \(S \) in rectangular coordinates.
 (b) A triple iterated integral for the volume of \(S \) in cylindrical coordinates.

(5) (30 points) Starting with the solid ball in \(xyz \)-space defined by \(x^2 + y^2 + z^2 \leq 4 \), let \(D \) denote the dome-shaped portion of the ball that lies above the plane \(z = 1 \). Set up, but do not evaluate, the following.
 (a) A triple iterated integral for the volume of \(D \) in rectangular coordinates.
 (b) A triple iterated integral for the volume of \(D \) in cylindrical coordinates.
 (c) A triple iterated integral for the for the volume of \(D \) in spherical coordinates.