Some answers will involve π, square roots, fractions, etc. Do not round off.

(1) (20 pts.) Let \(R \) be the region inside the circle \(r = 2 \sin \theta \) and outside the circle \(r = 1 \).

(a) Set up a double integral for the area of \(R \). Do not evaluate.

(b) If the density function is \(\rho = 1/r \), evaluate a double integral to find the mass of \(R \).

(c) Let \(S \) be the surface defined by \(z = 5 - x^2 - y^2 \). Set up a double integral for the surface area of the part of \(S \) that lies over \(R \). Do not evaluate.

(2) (10 pts.) Let \(S \) denote the plane \(x - y + z = 10 \). Find the surface area of the portion of \(S \) that lies above the given region \(R \).

(a) \(R \) is the rectangular region in the \(xy \)-plane with vertices \((0, 0), (0, 2), (3, 0), (3, 2)\).

(b) \(R \) is the circular region in the \(xy \)-plane inside the circle with polar equation \(r = 2 \cos \theta \).

(3) (20 pts.) Solve this integral by first reversing the order of integration.

\[
\int_0^1 \int_{2x}^1 \sin (y^2) \, dy \, dx
\]

(4) (20 pts.) Let \(E \) be the solid tetrahedron with vertices \((0,0,0), (1,1,0), (0,2,0), (0,2,2)\).

(a) Write \(\iiint_E \, dV \) as an iterated integral.

(b) Find the volume of \(E \) using any method. Specify the method used.

(c) If the density function is \(\rho = y + x \), evaluate a triple integral to find the mass of \(E \).

(5) (20 pts.) Let \(E \) denote the region inside the cylinder \(x^2 + y^2 = 1 \) and inside the sphere \(x^2 + y^2 + z^2 = 4 \). That is, \(E \) is defined by the inequalities \(x^2 + y^2 \leq 1 \) and \(x^2 + y^2 + z^2 \leq 4 \).

Write \(\iiint_E \, dV \) as an iterated integral using

(a) Cylindrical coordinates. Do not evaluate.

(b) Rectangular coordinates. Do not evaluate.

(6) (10 pts.) Let \(E \) be the region between the spheres \(x^2 + y^2 + z^2 = 1 \) and \(x^2 + y^2 + z^2 = 4 \) in the first octant. Evaluate \(\iiint_E \, z \, dV \).