(1) (20 pts.) Do the following for the function \(f(x) = \frac{x + 1}{x - 1} \).

(a) State the domain of \(f \).
(b) State the set of \(x \) values where \(f \) is continuous.
(c) Find the average rate of change for \(f(x) \) on the interval \([2, 3]\).
(d) Find the instantaneous rate of change of \(f \) at the point \(a = 2 \) using

\[
 f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.
\]
(e) Find the equation of the tangent line to the curve \(y = f(x) \) at the point where \(x = 2 \).
(2) (10 pts.) For the function \(f(x) = 2x - x^2 \), find \(f'(x) \) using

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

(3) (10 pts.) Find the limit, if it exists, otherwise say why it does not exist.

(a) \(\lim_{x \to \infty} \frac{\sin 2x}{x} = \)

(b) \(\lim_{x \to \infty} 2x \cos x = \)

(4) (10 pts.) Find the limit, if it exists, otherwise say why it does not exist.

\[
\lim_{x \to 2} \frac{\sqrt{1 + 2x - \sqrt{5}}}{x - 2} =
\]
(5) (15 pts.) Answer the following for the function $f(x) = \frac{x^3}{1-x}$.

(a) State the set of x values where f is continuous:

(b) State the x-intercepts:

(c) Find the following limits, or say why the limit does not exist.

(i) $\lim_{x \to 0^-} f(x) =$

(ii) $\lim_{x \to 0^+} f(x) =$

(iii) $\lim_{x \to 1^-} f(x) =$

(iv) $\lim_{x \to 1^+} f(x) =$

(6) (20 pts.) Answer the following for the function $f(x) = \frac{x^2 - 4}{1-x^2}$

(a) Describe the domain. (b) Find the asymptotes. (c) Find the x-intercepts.

(d) Sketch the graph of $y = f(x)$.
(7) (5 pts.) Use the given graph of \(f(x) = \sqrt{x} \) to find a number \(\delta \) such that
\[
|\sqrt{x} - 1| < 0.1 \text{ whenever } 0 < |x - 1| < \delta
\]

(8) (5 pts.) The graph of \(y = f(x) \) is given. Sketch the graph of the derivative \(y = f'(x) \).

(9) (5 pts.) Find the limit, if it exists, otherwise say why it does not exist
\[
\lim_{x \to \infty} \frac{x^{1/2} - x^2}{x + 3} =
\]