(1) (25 pts.) The Land & Sea Cable Company is connecting points A and B via point C. Over land, the cost per mile is r dollars but over the river the cost is $R = \sqrt{5} r$ dollars per mile. The river is $W = 3$ miles wide and $D = 10$ miles is the distance from A to the point opposite B. Write the cost function in terms of the distance x and solve for the value of x that minimizes the cost.
(2) (25 pts.) For the function \(f(x) = x^2 e^x \), find the following.

(a) The domain of \(f(x) \).
(b) Each \(x \)-intercept.
(c) Each horizontal asymptote.
(d) The intervals on which \(f(x) \) is increasing.
(e) The intervals on which \(f(x) \) is concave up.
(f) The local extrema. Classify each as a maximum or minimum.
(g) The inflection points.
(h) Sketch the graph of \(y = f(x) \).
(3) (10 pts.) \[\lim_{x \to 0} (1 - 2x)^{\frac{1}{x}} = \]

(4) (15 pts.)
(a) Find the linearization \(L(x) \) of the function \(f(x) = x + \frac{1}{x} \) at \(a = 2 \).
(b) Use part (a) to approximate \(f(1.8) \).
(5) (10 pts.) \(\lim_{x \to 0} \frac{\sin 2x}{x + 1 - \cos x} = \)

(6) (15 pts.) For the function \(f(x) = \sin x + \sin^2 x \) on the interval \([0, 2\pi]\), find the critical points. Find the absolute maximum and absolute minimum values.