1. Consider a curve \(y = \sqrt{16 - x^2} \) from \((-2, 2\sqrt{3})\) to \((2, 2\sqrt{3})\). Determine the arc length and the surface area of the solid obtained by rotating \(y \) about the \(x \)-axis.

Answer:

| Arc length = \(\frac{4}{3} \pi \) units, and Surface Area = 32\(\pi \) sq. units |

Solution:

Here, \(y = \sqrt{16 - x^2} \implies \frac{dy}{dx} = -\frac{x}{\sqrt{16 - x^2}}. \)

Arc Length \((L) = \int_{-2}^{2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \)

\[= \int_{-2}^{2} \frac{4}{\sqrt{16 - x^2}} \, dx \]

Put \(x = 4\sin\theta \)

Differentiating both sides, we get \(dx = 4\cos\theta \, d\theta \)

Converting the limits over \(\theta \),

\(x = -2 \implies \theta = -\pi/6 \) and \(x = 2 \implies \theta = \pi/6 \)

So, \(L = \int_{-\pi/6}^{\pi/6} \frac{4(4\cos\theta)}{\sqrt{16 - 16\sin^2\theta}} \, d\theta \)

\[= \int_{-\pi/6}^{\pi/6} \frac{4(4\cos\theta)}{4\cos\theta} \, d\theta \]

\[= 4 \left[\frac{\pi}{6} - \left(-\frac{\pi}{6} \right) \right] = \frac{4}{3}\pi. \]

The surface area \((S_A) \) is

\[S_A = \int_{-2}^{2} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \]

\[= 2\pi \int_{-2}^{2} \sqrt{16 - x^2} \left(\frac{4}{\sqrt{16 - x^2}} \right) \, dx \]

\[= 8\pi \int_{-2}^{2} \, dx \]

\[= 32\pi \]