The Circles of Lester, Evans, Parry, and Their Generalizations

Paul Yiu
Department of Mathematical Sciences,
Florida Atlantic University,
Boca Raton, Florida 33431
yiu@fau.edu

MathFest 2008
Madison, Wisconsin

Abstract: Beginning with the famous Lester circle containing the circumcenter, nine-point center and the two Fermat points of a triangle, we survey a number of interesting circles in triangle geometry.
CONTENTS

1. Some common triangle centers 1
2. The first Lester circle 8
3. The symmedian and isodynamic points 22
4. The first Evans circle 29
5. The Parry circle and the Parry point 40
1. Some common triangle centers

Figure 1. The Euler line and the nine-point circle

\[HN : NG : GO = 3 : 1 : 2.\]
Figure 2. The orthocentroidal circle

O and N are inverse in the orthocentroidal circle.
The reflections of the Euler line in the three sidelines intersect at a point on the circumcircle:

\[E = \left(\frac{a^2}{b^2 - c^2} : \frac{b^2}{c^2 - a^2} : \frac{c^2}{a^2 - b^2} \right). \]
Construct equilateral triangles $A'B'C$, $AB'C$, ABC' externally on the sides of triangle ABC.

AA', BB', and CC' concur at the **Fermat point**

$$F_+ = K \left(\frac{\pi}{3} \right) = \left(\frac{1}{\sqrt{3}S_A + S} : \frac{1}{\sqrt{3}S_B + S} : \frac{1}{\sqrt{3}S_C - S} \right).$$
If the equilateral triangles $A''BC$, $AB''C$, ABC'' are constructed internally, AA'', BB'', and CC'' concur at the **negative Fermat point**

$$F__ = K \left(-\frac{\pi}{3} \right) = \left(\frac{1}{\sqrt{3}S_A - S} : \frac{1}{\sqrt{3}S_B - S} : \frac{1}{\sqrt{3}S_C + S} \right).$$
Kiepert triangle $\mathcal{K}(\theta) := XYZ$,

Kiepert perspector $K(\theta) = \left(\frac{1}{S_A + S_\theta} : \frac{1}{S_B + S_\theta} : \frac{1}{S_C + S_\theta} \right)$.

Figure 6. Kiepert triangle $\mathcal{K}(\theta)$ and Kiepert perspector $K(\theta)$
The locus of the Kiepert perspector is a rectangular hyperbola whose center is the midpoint of the Fermat points.

\[(b^2 - c^2)yz + (c^2 - a^2)zx + (a^2 - b^2)xy = 0.\]
2. The first Lester circle

Theorem 1 (Lester). *The Fermat points are concyclic with the circumcenter and the nine-point center.*

![Figure 8](image-url)
Proof. (1) Let M be the intersection of F_+F_- and the Euler line. By the intersection chords theorem, it is enough to show that

$$MF_+ \cdot MF_- = MO \cdot MN.$$
(2) Consider a Kiepert perspector \(K(\theta) \) with homogeneous barycentric coordinates

\[
K(\theta) = \left(\frac{1}{S_A + S_\theta} : \frac{1}{S_B + S_\theta} : \frac{1}{S_C + S_\theta} \right).
\]

These homogeneous coordinates can be rewritten as

\[
K(\theta) = \left((S_B + S_\theta)(S_C + S_\theta), (S_C + S_\theta)(S_A + S_\theta), (S_A + S_\theta)(S_B + S_\theta) \right)
= (S_{BC} + S_{\theta\theta} + (S_B + S_C)S_\theta, \ldots, \ldots)
= (S_{BC} + S_{\theta\theta}, S_{CA} + S_{\theta\theta}, S_{AB} + S_{\theta\theta} + S_\theta(S_B + S_C, S_C + S_A, S_A + S_B)).
\]

Similarly,

\[
K(-\theta) = (S_{BC} + S_{\theta\theta}, S_{CA} + S_{\theta\theta}, S_{AB} + S_{\theta\theta}) - S_\theta(S_B + S_C, S_C + S_A, S_A + S_B).
\]

From these, \(K(\theta) \) and \(K(-\theta) \) divide harmonically the symmedian point \(K = (S_B + S_C, S_C + S_A, S_A + S_B) \) and

\[
Q(\theta) = (S_{BC} + S_{\theta\theta}, S_{CA} + S_{\theta\theta}, S_{AB} + S_{\theta\theta})
= (S_{BC}, S_{CA}, S_{AB}) + S_{\theta\theta}(1, 1, 1)
\]

which is a point on the Euler line, dividing the orthocenter \(H = (S_{BC}, S_{CA}, S_{AB}) \) and the centroid \(G = (1, 1, 1) \) in the ratio

\[
GQ(\theta) : Q(\theta)H = 3S_{\theta\theta} : S^2 = 3\cot^2\theta : 1.
\]
\[GQ(\theta) : Q(\theta)H = 3 S_{\theta \theta} : S^2 = 3 \cot^2 \theta : 1. \]
(3) For $\theta = \pm \frac{\pi}{3}$, this ratio is $1 : 1$.

$M = Q \left(\frac{\pi}{3} \right)$ is the midpoint of GH.

The Fermat line F_+F_- intersects the Euler line at the midpoint of H and G, which is the center of the **orthocentroidal circle** with HG as diameter.

![Figure 11. Fermat line and orthocentroidal circle](image-url)
(4) If we put $OH = 6d$, then

$$MO \cdot MN = 4d \cdot d = (2d)^2 = (MH)^2 = (MG)^2.$$

(5) Recall from (1) $MF_+ \cdot MF_- = MO \cdot MN = (MH)^2 = (MG)^2$.

![Figure 12. The Euler line](image1)

![Figure 13. Fermat line and orthocentroidal circle](image2)
Therefore, the Lester circle theorem is equivalent to each of the following.

1. The Fermat points are inverse in the orthocentroidal circle.
2. The circle F_+F_-G is tangent to the Euler line at G.
3. The circle F_+F_-H is tangent to the Euler line at H.

![Figure 14](image-url) The circles F_+F_-G and F_+F_-H
Theorem 2. The Fermat points are inverse in the orthocentroidal circle.

![Figure 15.](image)

Proof. Let M be the matrix of the orthocentroidal circle.

$$M = \begin{pmatrix}
-4S_A & S_A + S_B & S_A + S_C \\
S_A + S_B & -4S_B & S_B + S_C \\
S_A + S_C & S_B + S_C & -4S_C
\end{pmatrix}.$$

Write

$$F_+ = X + Y \quad \text{and} \quad F_- = X - Y,$$
with
\[X = (S_{BC} + \frac{1}{3}S^2 \ S_{CA} + \frac{1}{3}S^2 \ S_{AB} + \frac{1}{3}S^2), \]
\[Y = \frac{S}{\sqrt{3}} (S_B + S_C \ S_C + S_A \ S_A + S_B). \]

\[XMX^t = YMY^t = \frac{2}{3} (S_A(S_B - S_C)^2 + S_B(S_C - S_A)^2 + S_C(S_A - S_B)^2)S^2, \]
we have
\[F_+MF_-^t = (X + Y)M(X - Y)^t = XMX^t - YMY^t = 0. \]

This shows that the Fermat points are inverse in the orthocentroidal circle.

Corollary 3. Every circle through \(F_+ \) and \(F_- \) is orthogonal to the orthocentroidal circle.
Theorem 4 (Gibert). *Every circle with diameter a chord of the Kiepert hyperbola perpendicular to the Euler line passes through the Fermat points.*
Equation of line F_+F_-: $L = 0$.
Perpendicular to Euler line at H: $L_0 = 0$,
intersecting Kiepert hyperbola at Y_0.
Circle F_+F_-H is one in the pencil of conics through F_+, F_-, H and Y_0:
\[(b^2 - c^2)yz + (c^2 - a^2)zx + (a^2 - b^2)xy - L \cdot L_0 = 0\]
by suitably adjusting the linear forms L, L_0 by constants.
It center lies on the perpendicular bisector of F_+F_-.
Equation of line $F_+F_-\colon L = 0$.
Perpendicular to Euler line at G: $L_1 = 0$,
intersecting Kiepert hyperbola at Y_1.
Circle F_+F_-G is one in the pencil of conics through F_+, F_-, G and Y_1:
$$ (b^2 - c^2)yz + (c^2 - a^2)zx + (a^2 - b^2)xy - L \cdot L_1 = 0 $$
by suitably adjusting the linear forms L, L_1 by constants.
It center lies on the perpendicular bisector of F_+F_-.
For arbitrary t, let $L_t = (1 - t)L_0 + t \cdot L_1$.
The line $L_t = 0$ is perpendicular to the Euler line.
The equation
\[(b^2 - c^2)yz + (c^2 - a^2)zx + (a^2 - b^2)xy - L \cdot L_t = 0\]
represents a circle through the Fermat points.

Figure 19. Gibert’s generalization of Lester’s circle
The line joining the midpoints of HY_0 and GY_1 contains the midpoint of the every chord cut out by $L_t = 0$. This line is also the perpendicular bisector of F_+F_-. Therefore the center of the circle is the midpoint of the chord.

Figure 20. Gibert’s generalization of Lester’s circle
3. The symmedian and isodynamic points

If P, Q divide X, Y harmonically, then P and Q are inverse in the circle with diameter XY.

Figure 21
If P and Q are inverse in a circle C, then every circle through P and Q is orthogonal to C.
Figure 23.
Consider three circles each orthogonal to the circumcircle and with center on a sideline of triangle ABC.

Their centers are collinear, and are on the pole of the **symmedian point** $K = (a^2 : b^2 : c^2)$.

They have two common points J_+ and J_- called the **isodynamic points**, which are on the line OK (**Brocard axis**), and are inverse in the circumcircle.

Every circle through J_+ and J_- is orthogonal to the circumcircle.
The isodynamic points have coordinates

\[
J_+ = (a^2(\sqrt{3}S_A + S), b^2(\sqrt{3}S_B + S), c^2(\sqrt{3}S_C + S)),
\]

\[
= \sqrt{3}(a^2 S_A, b^2 S_B, c^2 S_C) + S(a^2, b^2, c^2);
\]

\[
J_- = \sqrt{3}(a^2 S_A, b^2 S_B, c^2 S_C) - S(a^2, b^2, c^2).
\]

They divide \(O\) and \(K\) harmonically.

Therefore, every circle through \(J_\pm\) is orthogonally to the **Brocard circle** (with diameter \(OK\)).

![Figure 24. The Brocard circle and the isodynamic points](image-url)
The isodynamic points are the only points whose \textbf{pedal triangles} are equilateral.

Figure 25. The pedal triangle of J_+ is equilateral
The isodynamic points are the **isogonal conjugates** of the Fermat points.

Figure 26. $J_+ = \text{isogonal conjugate of } F_+$
4. The first Evans circle

The **excentral triangle** $I_a I_b I_c$ has circumradius $2R$ and circumcenter $I' :=$ reflection of I in O.

![The excentral triangle and its circumcircle](image-url)
The triangle of reflections

Figure 28. The triangle of reflections
The Evans perspector W of the excentral triangle and the triangle of reflections

Figure 29. The Evans perspsector W
Let I_aA^* intersect OI at W. A routine calculation shows that

$$I'W : WI = R : -2r.$$

Similarly, I_bB^* and I_cC^* intersect OI at points given by the same ratio. Therefore the lines I_aA^*, I_bB^* and I_cC^* concur at W on OI.

Figure 30. The Evans perspsector W as a point on OI.
Theorem 5. The Evans perspector W and the incenter I are inverse in the circumcircle of the excentral triangle.

Proof. $I'W \cdot I'I = \frac{R}{R-2r} \cdot I'I^2 = \frac{R^2}{R(R-2r)} \cdot (2 \cdot OI)^2 = (2R)^2$. \qed
Evans also found that the excentral triangle is perspective with each of the Kiepert triangles $\mathcal{K}\left(\frac{\pi}{3}\right)$ and $\mathcal{K}\left(-\frac{\pi}{3}\right)$. He denoted these perspectors by V_+ and V_- and conjectured that V_+, V_-, I and W are concyclic.

Figure 32. Evans' perspector V_- of $\mathcal{K}\left(-\frac{\pi}{3}\right)$ and excentral triangle
Proposition 6. Let XBC and $X'I_bI_c$ be oppositely oriented similar isosceles triangles with bases BC and I_bI_c respectively. The lines I_aX and I_aX' are isogonal with respect to angle I_a the excentral triangle.

Figure 33. Isogonal lines joining I_a to apices of similar isosceles on BC and I_bI_c
Proof. Triangles $XB I_a$ and $X' I_b I_a$ are similar since
\[\angle XBI_a = \angle X'I_b I_a = \frac{\pi}{2} - \frac{B}{2} - \theta, \]
and as BC and $I_b I_c$ are antiparallel,
\[XB : X'I_b = BC : I_b I_c = I_a B : I_a I_b. \]
It follows that $\angle BI_a X = \angle I_b I_a X'$ and
the lines $I_a X$, $I_a X'$ are isogonal in the excentral triangle.
Theorem 7. Let XYZ be the Kiepert triangle $\mathcal{K}(\theta)$ of ABC. The lines I_aX, I_bY, I_cZ concur at a point $V(\theta)$ which is the isogonal conjugate of $K_e(-\theta)$ in the excentral triangle.

Proof. (i) I_aX', I_bY', I_cZ' concur at the Kiepert perspector $K_e(-\theta)$ of the excentral triangle.

(ii) Since I_aX and I_aX' are isogonal with respect to I_a, and similarly for the pairs I_bY, I_bY' and I_cZ and I_cZ', the lines I_aX, I_bY, I_cZ concur at the isogonal conjugate of $K_e(-\theta)$ in the excentral triangle. □

Corollary 8. V_\pm are the isodynamic points of the excentral triangle.

Therefore, every circle through V_+ and V_- is orthogonal to the circumcircle of the excentral triangle.

If such a circle contains the incenter I, it also contains the inverse of I in the circumcircle of the excentral triangle.

This latter is the Evans perspector W.
Theorem 9 (Evans). The points V_{\pm} are concyclic with I and W.

![Figure 35. The first Evans circle](image)

- X_{1019}
Proposition 10. The center of the first Evans circle is the point

\[X_{1019} = \left(\frac{a(b-c)}{b+c}; \frac{b(c-a)}{c+a}; \frac{c(a-b)}{a+b} \right). \]

Figure 36. The first Evans circle
5. The Parry circle and the Parry point

The **Parry circle** is the one passing through the **isodynamic points** J_{\pm} and the **centroid** G.

Since J_{\pm} are inverse in the Brocard circle, the Parry circle is orthogonal to the Brocard circle, and also contains the inverse of G in the Brocard circle.

The same is true with the Brocard circle replaced by the circumcircle.
Theorem 11. The inverse of the centroid G in the Brocard circle is the Euler reflection point E.

Proof. The equation of the Brocard circle is
\[(a^2 + b^2 + c^2)(a^2yz + b^2zx + c^2xy) - (x+y+z)(b^2c^2x + c^2a^2y + a^2b^2z) = 0.\]

The polar of the centroid is the line
\[(b^2 - c^2)^2 x + (c^2 - a^2)^2 y + (a^2 - b^2)^2 z = 0.\]

This clearly contains the Euler reflection point
\[E = \left(\frac{a^2}{b^2 - c^2} : \frac{b^2}{c^2 - a^2} : \frac{c^2}{a^2 - b^2} \right),\]
which also lies on the line
\[\sum (b^2 - c^2)(S_{AA} - S_{BC})x = 0\]
joining G to the midpoint of OK. \square
The lines GE and F_+F_- are parallel.
Since the Parry circle is orthogonal to the circumcircle, the polar O is the radical axis of the circles. This line passes through the symmedian point K. The **Parry point** P is the second intersection of the Parry circle and the circumcircle. It lies on a number of interesting circles.

![Figure 39. The Parry circle and Parry point](image)
(1) The circle $F_+ F_- G$ contains the Parry point P.

Figure 40. The circle through $F_+ F_- G$ contains the Parry point
(2) **The circle** OGK **contains the Parry point** P.

![Diagram](image.png)

Figure 41. The circle OGK contains the Parry point P
Proposition 12. The circle $F_+ F_- G$ intersects the circumcircle at the Parry point and the reflection of E in the Euler line.
Proposition 13. The circle OKG intersects the circumcircle at the Parry point P and the reflection of E in the Brocard axis.