Problem 1 (Recursion) 7 Points

Write a Python function `fastGrow` that accepts as input two integers \(x, y \) and does the following:

- If at least one of \(x \) and \(y \) is not an integer, `fastGrow` raises a `TypeError`.
- If at least one of \(x \) and \(y \) is negative, `fastGrow` raises a `ValueError`.
- In all other cases `fastGrow` returns \(f(x, y) \) where \(f \) is defined as follows:
 - \(f(x, y) = y + 1 \), if \(x = 0 \)
 - \(f(x, y) = f(x - 1, 1) \), if \(y = 0 \)
 - \(f(x, y) = f(x - 1, f(x, y - 1)) \), in all other cases.

Hints:
- For testing your program, use small values. The above function grows quite fast.
- The Python function `IsInstance` could be helpful.

Problem 2 (Polynomials) 8 Points

Write a Python class `IntegerPolynomial` as follows:

- Polynomials are generated by providing a list of integer coefficients, with the \(i \)th element in the list being the coefficient of \(x^i \). e.g., to define \(f(x) = 2x^2 + x - 3 \) a user could enter \(f=IntegerPolynomial([-3, 1, 2]) \).
- Provide an implementation of `__str__`, returning a string representation of a polynomial as output by the `prettyprint` function from Exam 1.
- Provide an implementation of `*`, multiplying two polynomials by means of Karatsuba’s algorithm.
- Provide a method `deg()` returning the degree of a polynomial. For the zero polynomial, your function should return Python’s special value `None`.
- Provide an implementation of `==` to check if two polynomials are equal – in particular \(42 \) and \(42+0\times x \) must be recognized as equal.

Good luck—and do not hesitate to ask questions!!