Abstract. Let X be a set of size v and $0 \leq t \leq k \leq v$. The set of all signed list designs with block size k is a module $M(L_k(X))$ over \mathbb{Z} and ∂_t defines a natural homomorphism from $M(L_k(X))$ to $M(L_t(X))$. The kernel of this homomorphism is the module of all null t-list designs. The set of all lists of size k is totally ordered under the lexicographic ordering. A tag is the largest element under the lexicographic ordering in the support of a null t-list design. Tags provide a natural basis for the image module under the map ∂_t.

A tag was first defined by the first author for the sets a few years ago. It provided a tool to study problems like existence conjecture of t-designs or the problem of characterization of degree sequences of k-uniform hypergraphs. These concepts were recently extended to lists in a joint work of the authors. These results and their applications to the existence of Steiner systems will be discussed in the lecture.

Keywords. Steiner systems, lists, tags, designs