Fibonacci’s Book of Squares

0.14 Examples from The Book of Squares

Leonardo Pisano (1170 – 1240), also known as Fibonacci, treated in his Book of Squares, the square numbers as sum of consecutive odd numbers:

\[n^2 = 1 + 3 + 5 + \cdots + (2n - 1). \]

Proof. (Without words)

\[\begin{array}{c}
\bullet \circ \bullet \circ \bullet \circ \bullet \\
\circ \circ \circ \circ \circ \circ \circ \\
\bullet \bullet \bullet \bullet \bullet \bullet \bullet \\
\circ \circ \circ \circ \circ \circ \circ \\
\bullet \bullet \bullet \bullet \bullet \bullet \bullet \\
\circ \circ \circ \circ \circ \circ \circ \\
\bullet \bullet \bullet \bullet \bullet \bullet \bullet \\
\end{array} \]

0.14.1 Proposition 14

Find an integer which, added to and subtracted from a square integer, yields always a square integer.

Solution. If \(x^2 + c = y^2 \) and \(y^2 + c = z^2 \), then \(x^2, y^2, z^2 \) form an arithmetic progression with common difference \(c \). This is equivalent to finding two adjacent chains of consecutive odd numbers with the same sum:

\[2x + 1, 2x + 3, \ldots, 2y - 1, \quad y - x \text{ terms with sum } c; \]
\[2y + 1, 2y + 3, \ldots, 2z - 1, \quad z - y \text{ terms with sum } c. \]

Fibonacci started with two integers \(m > n \), and constructed two adjacent chains of consecutive odd numbers as follows.

Assume that \(m \) and \(n \) are both odd. For the first chain, if \(\frac{m}{n} < \frac{m + n}{m - n} \), take \(m(m - n) \) consecutive odd numbers symmetrically about \(n(m + n) \);
if \(\frac{m}{n} > \frac{m + n}{m - n} \), take \(n(m + n) \) consecutive odd numbers symmetrically about \(m(m - n) \).

For the second chain, take \(n(m - n) \) consecutive odd numbers symmetrically about \(m(m + n) \).

These two chains always have equal sums.

\[\text{The sum of } 2k \text{ consecutive odd numbers placed symmetrically about an even number } 2a \text{ is } (2k)(2a) = 4ka. \]
If \(m \) and \(n \) have different parity, double the values of the “center number” and the number of terms involved above.

Examples

(1). \(m = 3, n = 1 \): 4 consecutive odd numbers centered at 6, and 2 consecutive odd numbers centered at 12.

\[
3 + 5 + 7 + 9 = 24 = 11 + 13; \quad 1^2 + 24 = 5^2, \quad 5^2 + 24 = 7^2.
\]

(2). \(m = 7, n = 3 \): 28 consecutive odd numbers centered at 30, and 12 consecutive odd numbers centered at 70.

\[
3 + 5 + \ldots + 57 = 840 = 59 + 61 + \ldots + 81; \quad 1^2 + 840 = 29^2, \quad 29^2 + 840 = 41^2.
\]

(3). \(m = 5, n = 4 \): 10 consecutive odd numbers centered at 80, and 8 consecutive odd numbers centered at 90.

\[
63 + 65 + \ldots + 81 = 720 = 83 + 85 + \ldots + 97; \quad 31^2 + 720 = 41^2, \quad 41^2 + 720 = 49^2.
\]

0.14.2 Proposition 17

Find a square rational number which, increased or diminished by 5, always yields a square number.

Solution. With \(m = 5, n = 4 \) as in Example 3 above, one obtains \(31^2 + 720 = 41^2 \) and \(41^2 + 720 = 49^2 \). Since \(720 = 5 \cdot 12^2 \), division by \(12^2 \) yields

\[
\left(\frac{31}{12} \right)^2 + 5 = \left(\frac{41}{12} \right)^2; \quad \left(\frac{41}{12} \right)^2 + 5 = \left(\frac{49}{12} \right)^2.
\]

0.14.3 The congruent number problem

Determine all squarefree integers which are the area of right triangles with rational sides.

If \(a, b, c \) are the rational sides of a right triangle with area \(n \), hypotenuse \(c \), then

\[
\left(\frac{c}{2} \right)^2 + n = (a + b)^2; \quad \left(\frac{c}{2} \right)^2 - n = (a - b)^2.
\]

Multiplying these equations, we have

\[
\left(\frac{c}{2} \right)^4 - n^2 = (a^2 - b^2)^2; \quad \left(\frac{c}{2} \right)^6 - n^2 \left(\frac{c}{2} \right)^2 = \frac{1}{4} c^2(a^2 - b^2)^2.
\]

Then, \(y^2 = x^3 - n^2x \) has a rational point \(\left(\frac{c^2}{4}, \frac{1}{2} c(a^2 - b^2) \right) \).

Theorem 0.9. \(n \) is a congruent number if and only if the elliptic curve \(y^2 = x^3 - n^2x \) has a rational point different from \((0,0), (\pm n, 0)\).