Problem F1. \(ABC\) is a triangle with \(a = 7, \ b = 12, \ c = 18\).
A transversal intersects the sidelines at \(X, \ Y, \ Z\) such that \(AZ = BX = CY = t\).
Calculate \(t\).
Problem F2. \(\triangle ABC \) is a triangle with \(a = 2, b = 3, c = 4 \). A transversal intersects the sidelines at \(X, Y, Z \) such that \(AY = BZ = CX = t \). Calculate \(t \).
Problem F3. \(ABC\) is a triangle with \(a = 7, b = 12, c = 18\).
A transversal intersects the sidelines at \(X, Y, Z\)
such that \(AZ = BX = CY = t\).
Calculate \(t\).
Problem F4. \(ABC \) is a triangle with \(a = 9, b = 10, c = 12 \).
A transversal intersects the sidelines at \(X, Y, Z \)
such that \(BX = CY = AZ = t \).
Calculate \(t \).
Problem F5. Given triangle ABC, construct a line intersecting BC at X externally, CA at Y and AB at Z internally so that $CX = CY = AZ$.
Problem F6. Two transversals intersect the sidelines BC of triangle ABC at X, X', CA at Y, Y', and AB at Z, Z' respectively. Show that the lines YZ', ZX', XY' intersect BC, CA, AB respectively at three collinear points.
Name: _______________________

Problem F7: Line with equal intercepts on sidelines of a given triangle.
Given triangle ABC,
construct a line intersecting BC at X externally,
CA at Y and AB at Z internally
so that $CX = CY = BZ$.

[Diagram of triangle ABC with a line intersecting BC at X, CA at Y, and AB at Z, with equal intercepts CX = CY = BZ.]