Chapter 2

The shoemaker’s knife

2.1 The shoemaker’s knife

Let P be a point on a segment AB. The region bounded by the three semicircles (on the same side of AB) with diameters AB, AP and PB is called a shoemaker’s knife. Suppose the smaller semicircles have radii a and b respectively. Let Q be the intersection of the largest semicircle with the perpendicular through P to AB. This perpendicular is an internal common tangent of the smaller semicircles.

Exercise

1. Show that the area of the shoemaker’s knife is πab.

2. Let UV be the external common tangent of the smaller semicircles, and R the intersection of PQ and UV. Show that

 (i) $UV = PQ$;

 (ii) $UR = PR = VR = QR$. Hence, with R as center, a circle can be drawn passing through P, Q, U, V.
3. Show that the circle through U, P, Q, V has the same area as the shoemaker’s knife.

2.2 Circles in the shoemaker’s knife

Theorem 2.1 (Archimedes). *The two circles each tangent to CP, the largest semicircle AB and one of the smaller semicircles have equal radii t, given by

$$t = \frac{ab}{a + b}.$$*

Proof. Consider the circle tangent to the semicircles $O(a + b)$, $O_1(a)$, and the line PQ. Denote by t the radius of this circle. Calculating in two ways the height of the center of this circle above the line AB, we have

$$(a + b - t)^2 - (a - b - t)^2 = (a + t)^2 - (a - t)^2.$$

From this,

$$t = \frac{ab}{a + b}.$$

The symmetry of this expression in a and b means that the circle tangent to $O(a + b)$, $O_2(b)$, and PQ has the same radius t.

Theorem 2.2 (Archimedes). *The circle tangent to each of the three semicircles has radius given by

$$\rho = \frac{ab(a + b)}{a^2 + ab + b^2}.$$*
2.2 Circles in the shoemaker’s knife

Proof. Let $\angle COO_2 = \theta$. By the cosine formula, we have

\[
\begin{align*}
(a + \rho)^2 &= (a + b - \rho)^2 + b^2 + 2b(a + b - \rho) \cos \theta, \\
(b + \rho)^2 &= (a + b - \rho)^2 + a^2 - 2a(a + b - \rho) \cos \theta.
\end{align*}
\]

Eliminating θ, we have

\[
a(a + \rho)^2 + b(b + \rho)^2 = (a + b)(a + b - \rho)^2 + ab^2 + ba^2.
\]

The coefficients of ρ^2 on both sides are clearly the same. This is a linear equation in ρ:

\[
a^3 + b^3 + 2(a^2 + b^2)\rho = (a + b)^3 + ab(a + b) - 2(a + b)^2 \rho,
\]

from which

\[
4(a^2 + ab + b^2)\rho = (a + b)^3 + ab(a + b) - (a^3 + b^3) = 4ab(a + b),
\]

and ρ is as above.

\[\square\]

Theorem 2.3 (Leon Bankoff). If the incircle $C(\rho)$ of the shoemaker’s knife touches the smaller semicircles at X and Y, then the circle through the points P, X, Y has the same radius as the Archimedean circles.
Proof. The circle through P, X, Y is clearly the incircle of the triangle CO_1O_2, since

$$CX = CY = \rho, \quad O_1X = O_1P = a, \quad O_2Y = O_2P = b.$$

The semiperimeter of the triangle CO_1O_2 is

$$a + b + \rho = (a + b) + \frac{ab(a + b)}{a^2 + ab + b^2} = \frac{(a + b)^3}{a^2 + ab + b^2}.$$

The inradius of the triangle is given by

$$\sqrt{\frac{ab\rho}{a + b + \rho}} = \sqrt{\frac{ab \cdot ab(a + b)}{(a + b)^3}} = \frac{ab}{a + b}.$$

This is the same as t, the common radius of Archimedes’ twin circles.

Construction of incircle of shoemaker’s knife

Let Q_1 and Q_2 be the “highest” points of the semicircles $O_1(a)$ and $O_2(b)$ respectively. The intersection of O_1Q_2 and O_2Q_1 is a point C_3 “above” P, and $C_3P = \frac{ab}{a+b} = t$. This gives a very easy construction of Bankoff’s circle in Theorem 2.3 above. From this, we obtain the points X and Y. The center of the incircle of the shoemaker’s knife is the intersection C of the lines O_1X and O_2Y. The incircle of the shoemaker’s knife is the circle $C(X)$. It touches the largest semicircle of the shoemaker at Z, the intersection of OC with this semicircle.

Note that $C_3(P)$ is the Bankoff circle, which has the same radius as the Archimedean circles.
Exercise

1. Show that the area of triangle CO_1O_2 is $\frac{ab(a+b)^2}{a^2+ab+b^2}$.

2. Show that the center C of the incircle of the shoemaker’s knife is at a distance 2ρ from the line AB.

3. Show that the area of the shoemaker’s knife to that of the heart (bounded by semicircles $O_1(a)$, $O_2(b)$ and the lower semicircle $O(a+b)$) is as ρ to $a+b$.

4. Show that the points of contact of the incircle $C(\rho)$ with the semicircles can be located as follows: Y, Z are the intersections with $Q_1(A)$, and X, Z are the intersections with $Q_2(B)$.

2.3 Archimedean circles in the shoemaker’s knife

Let UV be the external common tangent of the semicircles $O_1(a)$ and $O_2(b)$, which extends to a chord HK of the semicircle $O(a+b)$. Let C_4 be the intersection of O_1V and O_2U. Since

$$O_1U = a, \quad O_2V = b, \quad \text{and} \quad O_1P : PO_2 = a : b,$$

$C_4P = \frac{ab}{a+b} = t$. This means that the circle $C_4(t)$ passes through P and touches the common tangent HK of the semicircles at N.

Let M be the midpoint of the chord HK. Since O and P are symmetric (isotomic conjugates) with respect to O_1O_2,

$$OM + PN = O_1U + O_2V = a + b.$$
it follows that \((a + b) - QM = PN = 2t\). From this, the circle tangent to \(HK\) and the minor arc \(HK\) of \(O(a + b)\) has radius \(t\). This circle touches the minor arc at the point \(Q\).

Theorem 2.4 (Thomas Schoch). The incircle of the curvilinear triangle bounded by the semicircle \(O(a + b)\) and the circles \(A(2a)\) and \(B(2b)\) has radius \(t = \frac{ab}{a+b}\).

Proof. Denote this circle by \(S(x)\). Note that \(SO\) is a median of the triangle \(SO_1O_2\). By Apollonius theorem,

\[
(2a + x)^2 + (2b + x)^2 = 2[(a + b)^2 + (a + b - x)^2].
\]

From this,

\[
x = \frac{ab}{a + b} = t.
\]

\[\square\]

Exercise

1. The circles \((C_1)\) and \((C'_1)\) are each tangent to the outer semicircle of the shoemaker’s knife, and to \(OQ_1\) at \(Q_1\); similarly for the circles \((C_2)\) and \((C'_2)\). Show that they have equal radii \(t = \frac{ab}{a+b}\).
2. We call the semicircle with diameter \(O_1O_2 \) the *midway semicircle* of the shoemaker’s knife.

Show that the circle tangent to the line \(PQ \) and with center at the intersection of \((O_1)\) and the midway semicircle has radius \(t = \frac{ab}{a+b} \).

3. Show that the radius of the circle tangent to the midway semicircle, the outer semicircle, and with center on the line \(PQ \) has radius \(t = \frac{ab}{a+b} \).