21.1 Menelaus’ theorem

Theorem 21.1 (Menelaus). Given a triangle ABC with points X, Y, Z on the side lines BC, CA, AB respectively, the points X, Y, Z are collinear if and only if

$$\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = -1.$$

Proof. (\implies) Let W be the point on AC such that $BW//XY$. Then,

$$\frac{BX}{XC} = \frac{WY}{YC}, \quad \text{and} \quad \frac{AZ}{ZB} = \frac{AY}{YW}.$$

It follows that

$$\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = \frac{WY}{YC} \cdot \frac{CY}{YA} \cdot \frac{AY}{YW} = \frac{CY}{YC} \cdot \frac{AY}{YA} \cdot \frac{WY}{YW} = -1.$$
Suppose the line joining \(X \) and \(Z \) intersects \(AC \) at \(Y' \). From above,
\[
\frac{BX}{XC} \cdot \frac{CY'}{Y'A} \cdot \frac{AZ}{ZB} = -1 = \frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB}.
\]

It follows that
\[
\frac{CY'}{Y'A} = \frac{CY}{YA}.
\]
The points \(Y' \) and \(Y \) divide the segment \(CA \) in the same ratio. These must be the same point, and \(X, Y, Z \) are collinear.

Example 21.1. The external angle bisectors of a triangle intersect their opposite sides at three collinear points.

![Diagram](image)

Proof. If the external bisectors are \(AX', BY', CZ' \) with \(X', Y', Z' \) on \(BC, CA, AB \) respectively, then
\[
\frac{BX'}{X'C} = \frac{c}{b}, \quad \frac{CY'}{Y'A} = \frac{a}{c}, \quad \frac{AZ'}{Z'B} = \frac{b}{a}.
\]

It follows that \(\frac{BX'}{X'C} \cdot \frac{CY'}{Y'A} \cdot \frac{AZ'}{Z'B} = -1 \) and the points \(X', Y', Z' \) are collinear. \(\square \)
21.2 Ceva’s theorem

Theorem 21.2 (Ceva). Given a triangle ABC with points X, Y, Z on the side lines BC, CA, AB respectively, the lines AX, BY, CZ are concurrent if and only if

\[
\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = +1.
\]

Proof. \((\implies=)\) Suppose the lines AX, BY, CZ intersect at a point \(P\). Consider the line \(BPY\) cutting the sides of triangle \(CAX\). By Menelaus’ theorem,

\[
\frac{CY}{YA} \cdot \frac{AP}{PX} \cdot \frac{XB}{BC} = -1, \quad \text{or} \quad \frac{CY}{YA} \cdot \frac{PA}{XP} \cdot \frac{BX}{BC} = +1.
\]

Also, consider the line \(CPZ\) cutting the sides of triangle \(ABX\). By Menelaus’ theorem again,

\[
\frac{AZ}{ZB} \cdot \frac{BC}{CX} \cdot \frac{XP}{PA} = -1, \quad \text{or} \quad \frac{AZ}{ZB} \cdot \frac{BC}{XC} \cdot \frac{XP}{PA} = +1.
\]

Multiplying the two equations together, we have

\[
\frac{CY}{YA} \cdot \frac{AZ}{ZB} \cdot \frac{BX}{XC} = +1.
\]

\((\iff=)\) Exercise.
Example 21.2. (1) The centroid. If D, E, F are the midpoints of the sides BC, CA, AB of triangle ABC, then clearly

$$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1.$$

The medians AD, BE, CF are therefore concurrent. Their intersection is the centroid G of the triangle.

Consider the line BGE intersecting the sides of triangle ADC. By the Menelaus theorem,

$$-1 = \frac{AG}{GD} \cdot \frac{DB}{BC} \cdot \frac{CE}{EA} = \frac{AG}{GD} \cdot \frac{-1}{2} \cdot 1.$$

It follows that $AG : GD = 2 : 1$. The centroid of a triangle divides each median in the ratio $2:1$.

(2) The incenter. Let X, Y, Z be points on BC, CA, AB such that AX, BY, CZ bisect angles BAC, CBA and ACB respectively. Then

$$\frac{AZ}{ZB} = \frac{b}{a}, \quad \frac{BX}{XC} = \frac{c}{b}, \quad \frac{CY}{YA} = \frac{a}{c}.$$

It follows that

$$\frac{AZ}{ZB} \cdot \frac{BX}{XC} \cdot \frac{CY}{YA} = \frac{b}{a} \cdot \frac{c}{b} \cdot \frac{a}{c} = +1,$$

and AX, BY, CZ are concurrent. Their intersection is the incenter of the triangle.
(3) In triangle ABC, $A = \frac{5\pi}{8}$, $B = \frac{\pi}{4}$, and $C = \frac{\pi}{8}$. Prove that the A-altitude, the B-bisector, and the C-median are concurrent.

Solution. Suppose $AX = 1$. Consider the two squares $AXBP$ and $AXTY$.

Note that triangle ATC is isosceles since $\angle TAC = \angle ATX - \angle ACB = \frac{\pi}{4} - \frac{\pi}{8} = \frac{\pi}{8} = C$. Therefore,

\[
\frac{BX}{XC} = \frac{1}{1 + \sqrt{2}}, \quad \frac{CY}{YA} = \frac{BC}{BA} = \frac{2 + \sqrt{2}}{\sqrt{2}} = 1 + \sqrt{2}.
\]

Since Z is the midpoint of AB,

\[
\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = 1.
\]

The three lines AX, BY, CZ are concurrent by Ceva’s theorem.
Exercise

1. Given triangle ABC with $a = 15$, $b = 14$, $c = 9$.
 (a) Find points X on BC, Y on CA, and Z on AB such that $BX = CY = AZ$ and AX, BY, CZ are concurrent.
 (b) Find also points X' on BC, Y' on CA, and Z' on AB such that $X'C = Y'A = Z'B$ and AX', BY', CZ' are concurrent.

2. ABC is a right triangle. Show that the lines AX, BY, and CQ are concurrent.
3. \(ABC \) is a triangle with \(BC = 12 \), \(CA = 13 \), and \(AB = 15 \). Show that the median \(AD \), angle bisector \(BE \), and the altitude \(CF \) are concurrent.

4. Given three circles with centers \(A \), \(B \), \(C \) and distinct radii, show that the exsimilicenters of the three pairs of circles are collinear.
Menelaus and Ceva theorems
22.1 Barycentric coordinates

In a given triangle ABC, every point P is coordinatized by a triple of
numbers $(x : y : z)$ in such a way that the system of masses x at A, y
at B, and z at C will have its balance point at P. A mass y at B and
mass z at C will balance at the point X on the line BC. A mass x at A
and a mass $y + z$ at X will balance at the point P.

\[
(y + z)X = yB + zC, \\
(x + y + z)P = xA + (y + z)X = xA + yB + zC.
\]

We say that with reference to triangle ABC, the point P has
(i) absolute barycentric coordinate \(\frac{xA + yB + zC}{x + y + z} \) and
(ii) homogeneous barycentric coordinates $(x : y : z)$.

![Diagram of barycentric coordinates](image_url)
22.2 Cevian and traces

Let P be a point with homogeneous barycentric coordinates $(x : y : z)$ with reference to triangle ABC. The three lines joining a point P to the vertices of the reference triangle ABC are called the cevians of P. The intersections X, Y, Z of these cevians with the side lines are called the traces of P. The coordinates of the traces can be very easily written down:

$$X = (0 : y : z), \quad Y = (x : 0 : z), \quad Z = (x : y : 0).$$

Theorem 22.1 (Ceva theorem). *Three points X, Y, Z on BC, CA, AB respectively are the traces of a point if and only if they have coordinates of the form*

$$X = 0 : y : z, \quad Y = x : 0 : z, \quad Z = x : y : 0,$$

*for some x, y, z.***
Example 22.1. The centroid. The midpoint points of the sides have coordinates

\[
X = (0 : 1 : 1), \\
Y = (1 : 0 : 1), \\
Z = (1 : 1 : 0).
\]

The centroid \(G \) has coordinates \((1 : 1 : 1) \).

Example 22.2. The incenter

The traces of the incenter have coordinates

\[
X = (0 : b : c), \\
Y = (a : 0 : c), \\
Z = (a : b : 0).
\]

The incenter \(I \) has coordinates \((a : b : c) \).
22.3 Area and barycentric coordinates

Theorem 22.2. If in homogeneous barycentric coordinates with reference to triangle ABC, $P = (x : y : z)$, then

$$\Delta PBC : \Delta APC : \Delta ABP = x : y : z.$$

Proof. Consider the trace X of P on BC. Since a mass x at A and a mass $y + z$ at X balance at P, $AP : PX = y + z : x$, and $PX : AX = x : x + y + z$. It follows that

$$\Delta PBC : \Delta ABC = PX : AX = x : x + y + z.$$

Similarly, $\Delta APC : \Delta ABC = y : x + y + z$ and $\Delta ABP : \Delta ABC = z : x + y + z$. Combining these, we have

$$x : y : z = \Delta PBC : \Delta APC : \Delta ABP.$$

Because of this theorem, homogeneous barycentric coordinates are also known as areal coordinates.
A useful area formula

If for \(i = 1, 2, 3 \), \(P_i = x_i \cdot A + y_i \cdot B + z_i \cdot C \) (in absolute barycentric coordinates), then the area of the oriented triangle \(P_1 P_2 P_3 \) is

\[
\Delta P_1 P_2 P_3 = \begin{vmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_3 & y_3 & z_3 \\
\end{vmatrix} \cdot \Delta ABC.
\]

Example 22.3. Let \(X, Y, Z \) be points on \(BC, CA, AB \) such that \(BX : XC = 2 : 1 \), \(CY : YA = 5 : 3 \), \(AZ : ZB = 3 : 2 \). (The numbers indicated along the lines are proportions of lengths, and are not actual lengths).

Their homogeneous barycentric coordinates are \(X = 0 : 1 : 2 \), \(Y = 3 : 0 : 5 \), and \(Z = 2 : 3 : 0 \).

\[
\Delta XYZ = \begin{vmatrix}
 1 & 1 & 1 \\
 3 & 0 & 5 \\
 2 & 3 & 0 \\
\end{vmatrix} \Delta ABC = \frac{28}{120} \Delta ABC = \frac{7}{30} \Delta ABC.
\]

\[
\Delta ABC = \frac{28}{120} \Delta ABC = \frac{7}{30} \Delta ABC.
\]
Example 22.4. With the same points X, Y, Z in the preceding example, the lines AX, BY, CZ bound a triangle PQR. Suppose triangle ABC has area Δ. Find the area of triangle PQR.

We have already known the coordinates of X, Y, Z. From these, it is easy to find those of P, Q, R:

<table>
<thead>
<tr>
<th>$P = BY \cap CZ$</th>
<th>$Q = CZ \cap AX$</th>
<th>$R = AX \cap BY$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = (5 : 0 : 3)$</td>
<td>$Z = (2 : 3 : 0)$</td>
<td>$X = (0 : 1 : 2)$</td>
</tr>
<tr>
<td>$Z = (2 : 3 : 0)$</td>
<td>$X = (0 : 1 : 2)$</td>
<td>$Y = (5 : 0 : 3)$</td>
</tr>
</tbody>
</table>

This means that the absolute barycentric coordinates of X, Y, Z are

$$P = \frac{1}{31} (10A + 15B + 6C), \quad Q = \frac{1}{11} (2A + 3B + 6C), \quad R = \frac{1}{19} (10A + 3B + 6C).$$

The area of triangle PQR

$$= \frac{1}{31 \cdot 11 \cdot 19} \begin{vmatrix} 10 & 15 & 6 \\ 2 & 3 & 6 \\ 10 & 3 & 6 \end{vmatrix} \cdot \Delta = \frac{576}{6479} \Delta.$$
Exercise

1. ABC is a triangle of area 1, and $A_1, A_2, B_1, B_2, C_1, C_2$ are the points of trisection of BC, CA and AB respectively. Which of the two areas is larger, the one bounded by three lines AA_1, BB_1, CC_1 or the one bounded by the four lines BB_1, BB_2, CC_1, CC_2?

2. Let X, Y, Z be points dividing BC, CA, AB in the golden ratio. Let P be the intersection of BY and CZ, Q that CZ and AX, and R that of AX and BY. Show that
 (i) P, Q, R are respectively the midpoints of BY, CZ, AX;
 (ii) P divides QC in the golden ratio; so do Q and R divide RA and PB.
 (iii) Compare the areas of triangles XYZ and PQR. ¹
