Contents

1 Some Basic Theorems .. 101

1.1 The Pythagorean Theorem 101
1.2 Constructions of geometric mean 104
1.3 The golden ratio ... 106
 1.3.1 The regular pentagon 106
1.4 Basic construction principles 108
 1.4.1 Perpendicular bisector locus 108
 1.4.2 Angle bisector locus 109
 1.4.3 Tangency of circles 110
 1.4.4 Construction of tangents of a circle 110
1.5 The intersecting chords theorem 112
1.6 Ptolemy’s theorem .. 114

2 The laws of sines and cosines 115

2.1 The law of sines ... 115
2.2 The orthocenter ... 116
2.3 The law of cosines ... 117
2.4 The centroid ... 120
2.5 The angle bisector theorem 121
 2.5.1 The lengths of the bisectors 121
2.6 The circle of Apollonius 123

3 The tritangent circles ... 125

3.1 The incircle .. 125
3.2 Euler’s formula .. 128
3.3 Steiner’s porism ... 129
3.4 The excircles .. 130
3.5 Heron’s formula for the area of a triangle 131

4 The arbelos .. 133

4.1 Archimedes’ twin circles 133
 4.1.1 Harmonic mean and the equation \(\frac{1}{a} + \frac{1}{b} = \frac{1}{t} \) 134
 4.1.2 Construction of the Archimedean twin circles 134
4.2 The incircle .. 135
 4.2.1 Construction of the incircle of the arbelos 136
 4.2.2 Alternative constructions of the incircle 138
4.3 Archimedean circles 140
5 Menelaus’ and Ceva’s theorems
5.1 Menelaus’ theorem 201
5.2 Centers of similitude of two circles 203
 5.2.1 Desargue’s theorem 203
5.3 Ceva’s theorem 204
5.4 Some triangle centers 205
 5.4.1 The centroid 205
 5.4.2 The incenter 205
 5.4.3 The Gergonne point 206
 5.4.4 The Nagel point 207
5.5 Isotomic conjugates 208

6 The Euler line and the nine-point circle 211
6.1 The Euler line 211
 6.1.1 Inferior and superior triangles 211
 6.1.2 The orthocenter and the Euler line 212
6.2 The nine-point circle 213
6.3 Distances between triangle centers 215
 6.3.1 Distance between the circumcenter and orthocenter . 215
 6.3.2 Distance between circumcenter and tritangent centers . 216
 6.3.3 Distance between orthocenter and tritangent centers . 217
6.4 Feuerbach’s theorem 219

7 Isogonal conjugates 221
7.1 Directed angles 221
7.2 Isogonal conjugates 222
7.3 The symmedian point and the centroid 223
7.4 Isogonal conjugates of the Gergonne and Nagel points 225
 7.4.1 The Gergonne point and the insimilicenter T_+ . 225
 7.4.2 The Nagel point and the exsimilicenter T_- 227
7.5 The Brocard points 228
7.6 Kariya’s theorem 230
7.7 Isogonal conjugate of an infinite point 233

8 The excentral triangle 235
8.1 The Euler line of the excentral triangle 235
8.2 The circumcircle of the excentral triangle 236

9 Homogeneous Barycentric Coordinates 301
9.1 Absolute and homogeneous barycentric coordinates 301
 9.1.1 The centroid 301
 9.1.2 The incenter 302
 9.1.3 The barycenter of the perimeter 302
 9.1.4 The Gergonne point 303
9.2 Cevian triangle 304
 9.2.1 The Nagel point and the extouch triangle 305
 9.2.2 The orthocenter and the orthic triangle 305
 9.2.3 The inferior and superior triangles 307
CONTENTS

10 Some applications of barycentric coordinates 309

10.1 Construction of mixtilinear incircles .. 309
 10.1.1 The insimilicenter and the exsimilicenter of the circumcircle and incircle 309
 10.1.2 Mixtilinear incircles .. 310

10.2 Isotomic and isogonal conjugates .. 311

10.3 Isotomic conjugates .. 311

10.4 Equal-parallelians point .. 313

11 Computation of barycentric coordinates 315

11.1 The Feuerbach point .. 315

11.2 The OI line .. 317
 11.2.1 The circumcenter of the excentral triangle 317
 11.2.2 The centers of similitude of the circumcircle and the incircle 317
 11.2.3 The homothetic center T of excentral and intouch triangles 318

11.3 The excentral triangle .. 319

11.3.1 The centroid ... 319

11.3.2 The incenter ... 319

12 Some interesting circles 321

12.1 A fundamental principle on 6 concyclic points 321
 12.1.1 The radical axis of two circles 321
 12.1.2 Test for 6 concyclic points 322

12.2 The Taylor circle .. 323

12.3 Two Lemoine circles .. 324
 12.3.1 The first Lemoine circle ... 324
 12.3.2 The second Lemoine circle 325
 12.3.3 Construction of K ... 325
 12.3.4 The center of the first Lemoine circle 326

13 Straight line equations 401

13.1 Area and barycentric coordinates 401

13.2 Equations of straight lines .. 402
 13.2.1 Two-point form .. 402
 13.2.2 Intersection of two lines 403

13.3 Perspective triangles .. 404
 13.3.1 The Conway configuration .. 405

13.4 Perspectivity ... 407
 13.4.1 The Schiffler point: intersection of four Euler lines 408

14 Cevian nest theorem 409

14.1 Trilinear pole and polar ... 409
 14.1.1 Trilinear polar of a point 409
 14.1.2 Tripole of a line .. 411

14.2 Anticevian triangles .. 412
 14.2.1 Construction of anticevian triangle 412

14.3 Cevian quotients .. 415
 14.3.1 The cevian nest theorem ... 415
 14.3.2 Basic properties of cevian quotients 419
15 Circle equations 421
15.1 The power of a point with respect to a circle 421
15.2 Circle equation 422
15.3 Points on the circumcircle 423
15.3.1 $X(101)$ 423
15.3.2 $X(100)$ 423
15.3.3 The Steiner point $X(99)$ 424
15.3.4 The Euler reflection point $E = X(110)$ 424
15.4 Circumcevian triangle 425
15.5 The third Lemoine circle 426

16 The Brocard triangles and the Brocard circle 429
16.1 The first Brocard triangle 429
16.2 The Brocard circle 430
16.3 The second Brocard triangle 433
16.4 The Steiner and Tarry points 434
16.5 The third Brocard triangle 436
Chapter 1

Some Basic Theorems

1.1 The Pythagorean Theorem

Theorem 1.1 (Pythagoras). The lengths $a \leq b < c$ of the sides of a right triangle satisfy the relation

$$a^2 + b^2 = c^2.$$

Proof.

Theorem 1.2 (Converse of Pythagoras’ theorem). If the lengths of the sides of $\triangle ABC$ satisfy $a^2 + b^2 = c^2$, then the triangle has a right angle at C.

Proof. Consider a right triangle XYZ with $\angle Z = 90^\circ$, $YZ = a$, and $XZ = b$. By the Pythagorean theorem, $XY^2 = YZ^2 + XZ^2 = a^2 + b^2 = c^2 = AB^2$. It follows that $XY = AB$, and $\triangle ABC \equiv \triangle XYZ$ by the SSS test, and $\angle C = \angle Z = 90^\circ$.

\[\square\]
Example 1.1. Trigonometric ratios of 30°, 45°, and 60°:

\[
\begin{array}{|c|c|c|c|}
\hline
\theta & \sin \theta & \cos \theta & \tan \theta \\
\hline
30^\circ & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{3} \\
45^\circ & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\
60^\circ & \frac{\sqrt{3}}{2} & \frac{1}{2} & \sqrt{3} \\
\hline
\end{array}
\]

Example 1.2. For an arbitrary point P on the minor arc BC of the circumcircle of an equilateral triangle ABC, $AP = BP + CP$.

Proof. If Q is the point on AP such that $PQ = PC$, then the isosceles triangle CPQ is equilateral since $\angle CPQ = \angle CBA = 60^\circ$. Note that $\angle ACQ = \angle BCP$. Thus, $\triangle ACQ \equiv \triangle BCP$ by the SAS congruence test. From this, $AQ = BP$, and $AP = AQ + QP = BP + CP$. \qed
Example 1.3. Given a rectangle $ABCD$, to construct points P on BC and Q on CD such that triangle APQ is equilateral.

Let BCY and CDX are equilateral triangles inside the rectangle $ABCD$. Extend the lines AX and AY to intersect BC and CD respectively at P and Q. APQ is equilateral.

Proof. Suppose $AB = 2a$ and $BC = 2b$. The distance of X above $AB = 2b - \sqrt{3}a$. By the Pythagorean theorem, $AX^2 = a^2 + (2b - \sqrt{3}a)^2 = 4(a^2 + b^2 - \sqrt{3}ab)$. X is the midpoint of AP. Therefore, $AP^2 = 16(a^2 + b^2 - \sqrt{3}ab)$. Similarly, $AQ^2 = (2AY)^2 = 4AY^2 = 4 \cdot (b^2 + (2a - \sqrt{3}b)^2) = 16(a^2 + b^2 - \sqrt{3}ab)$. Finally, $CP = 2b - 2(2b - \sqrt{3}a) = 2(\sqrt{3}a - b)$, $CQ = 2(\sqrt{3}b - a)$, and $PQ^2 = CP^2 + CQ^2 = 4((\sqrt{3}a - b)^2 + (\sqrt{3}b - a)^2) = 16(a^2 + b^2 - \sqrt{3}ab)$. It follows that $AP = AQ = PQ$, and triangle APQ is equilateral.
1.2 Constructions of geometric mean

We present two ruler-and-compass constructions of the geometric means of two quantities given as lengths of segments. These are based on Euclid’s proof of the Pythagorean theorem.

Construct the altitude at the right angle to meet AB at P and the opposite side ZZ' of the square $ABZZ'$ at Q. Note that the area of the rectangle $AZQP$ is twice of the area of triangle AZC. By rotating this triangle about A through a right angle, we obtain the congruent triangle ABY', whose area is half of the area of the square on AC. It follows that the area of rectangle $AZQP$ is equal to the area of the square on AC. For the same reason, the area of rectangle $BZ'QP$ is equal to that of the square on BC. From these, the area of the square on AB is equal to the sum of the areas of the squares on BC and CA.

Construction. Given two segments of length $a < b$, mark three points P, A, B on a line such that $PA = a$, $PB = b$, and A, B are on the same side of P. Describe a semicircle with PB as diameter, and let the perpendicular through A intersect the semicircle at Q. Then $PQ^2 = PA \cdot PB$, so that the length of PQ is the geometric mean of a and b.
Construction. Given two segments of length a, b, mark three points A, P, B on a line (P between A and B) such that $AP = a, PB = b$. Describe a semicircle with AB as diameter, and let the perpendicular through P intersect the semicircle at Q. Then $PQ^2 = PA \cdot PB$, so that the length of PQ is the geometric mean of a and b.
1.3 The golden ratio

Given a segment AB, a point P in the segment is said to divide it in the golden ratio if $AP^2 = PB \cdot AB$. Equivalently, $\frac{AP}{PB} = \frac{\sqrt{5}+1}{2}$. We shall denote this golden ratio by φ. It is the positive root of the quadratic equation $x^2 = x + 1$.

Construction (Division of a segment in the golden ratio). Given a segment AB,
(1) draw a right triangle ABM with BM perpendicular to AB and half in length,
(2) mark a point Q on the hypotenuse AM such that $MQ = MB$,
(3) mark a point P on the segment AB such that $AP = AQ$.

Then P divides AB into the golden ratio.

Suppose PB has unit length. The length φ of AP satisfies

$$\varphi^2 = \varphi + 1.$$

This equation can be rearranged as

$$\left(\varphi - \frac{1}{2} \right)^2 = \frac{5}{4}.$$

Since $\varphi > 1$, we have

$$\varphi = \frac{1}{2} \left(\sqrt{5} + 1 \right).$$

Note that

$$\frac{AP}{AB} = \frac{\varphi}{\varphi + 1} = \frac{1}{\varphi} = \frac{2}{\sqrt{5} + 1} = \frac{\sqrt{5} - 1}{2}.$$

This explains the construction above.

1.3.1 The regular pentagon

Consider a regular pentagon $ACBDE$. It is clear that the five diagonals all have equal lengths. Note that
(1) $\angle ACB = 108^\circ$,
1.3 The golden ratio

(2) triangle CAB is isosceles, and
(3) $\angle CAB = \angle CBA = (180^\circ - 108^\circ) \div 2 = 36^\circ$.

In fact, each diagonal makes a 36° angle with one side, and a 72° angle with another.

It follows that
(4) triangle PBC is isosceles with $\angle PBC = \angle PCB = 36^\circ$,
(5) $\angle BPC = 180^\circ - 2 \times 36^\circ = 108^\circ$, and
(6) triangles CAB and PBC are similar.

Note that triangle ACP is also isosceles since
(7) $\angle ACP = \angle APC = 72^\circ$. This means that $AP = AC$.

Now, from the similarity of CAB and PBC, we have $AB : AC = BC : PB$. In other words $AB \cdot AP = AP \cdot PB$, or $AP^2 = AB \cdot PB$. This means that P divides AB in the golden ratio.

Construction. Given a segment AB, we construct a regular pentagon $ACBDE$ with AB as a diagonal.

(1) Divide AB in the golden ratio at P.
(2) Construct the circles $A(P)$ and $P(B)$, and let C be an intersection of these two circles.
(3) Construct the circles $A(AB)$ and $B(C)$ to intersect at a point D on the same side of BC as A.
(4) Construct the circles $A(P)$ and $D(P)$ to intersect at E.

Then $ACBDE$ is a regular pentagon with AB as a diagonal.
1.4 Basic construction principles

1.4.1 Perpendicular bisector locus

A variable point P is equidistant from two fixed points A and B if and only if P lies on the perpendicular bisector of the segment AB.

The perpendicular bisectors of the three sides of a triangle are concurrent at the circumcenter of the triangle. This is the center of the circumcircle, the circle passing through the three vertices of the triangle.

![Diagram showing perpendicular bisectors and circumcircle]

The circumcenter of a right triangle is the midpoint of its hypotenuse.
1.4.2 Angle bisector locus

A variable point P is equidistant from two fixed lines ℓ and ℓ' if and only if P lies on the bisector of one of the angles between ℓ and ℓ'.

The bisectors of the three angles of a triangle are concurrent at a point which is at equal distances from the three sides. With this point as center, a circle can be constructed tangent to the sides of the triangle. This is the incircle of the triangle. The center is the incenter.

Proof. Let the bisectors of angles B and C intersect at I. Consider the pedals of I on the three sides. Since I is on the bisector of angle B, $IX = IZ$. Since I is also on the bisector of angle C, $IX = IY$. It follows $IX = IY = IZ$, and the circle, center I, constructed through X, also passes through Y and Z, and is tangent to the three sides of the triangle. \qed
1.4.3 Tangency of circles

Two circles \((O) \) and \((O') \) are tangent to each other if they are tangent to a line \(\ell \) at the same line \(P \), which is a common point of the circles. The tangency is internal or external according as the circles are on the same or different sides of the common tangent \(\ell \).

![Diagram of tangency of circles]

The line joining their centers passes through the point of tangency.

The distance between their centers is the sum or difference of their radii, according as the tangency is external or internal.

1.4.4 Construction of tangents of a circle

A tangent to a circle is a line which intersects the circle at only one point. Given a circle \(O(A) \), the tangent to a circle at \(A \) is the perpendicular to the radius \(OA \) at \(A \).

![Diagram of construction of tangents]

If \(P \) is a point outside a circle \((O) \), there are two lines through \(P \) tangent to the circle. Construct the circle with \(OP \) as diameter to intersect \((O) \) at two points. These are the points of tangency.

The two tangents have equal lengths since the triangles \(OAP \) and \(OBP \) are congruent by the RHS test.
Example 1.4. Given two congruent circles each with center on the other circle, to construct a circle tangent to the center line, and also to the given circles, one internally and the other externally.

Let $AB = a$. Suppose the required circle has radius r, and $AT = x$, where T is the point of tangency T with the center line.

$$(a + x)^2 + r^2 = (a + r)^2,$$

$$x^2 + r^2 = (a - r)^2.$$

From these, we have

$$x + a \frac{a}{2} = \frac{\sqrt{3}}{2} \cdot a,$$

$$\frac{a}{2} + x = 2r.$$

This means that if M is the midpoint of AB, then $MT = \frac{\sqrt{3}}{2} \cdot a$, which is the height of the equilateral triangle on AB. In other words, if C is an intersection of the two given circles, then CM and MT are two adjacent sides of a square. Furthermore, the side opposite to CM is a diameter of the required circle!
1.5 The intersecting chords theorem

Theorem 1.3. Given a point P and a circle $O(r)$, if a line through P intersects the circle at two points A and B, then $PA \cdot PB = OP^2 - r^2$, independent of the line.

![Diagram](https://via.placeholder.com/150)

Proof. Let M be the midpoint of AB. Note that OM is perpendicular to AB. If P is outside the circle, then

$$PA \cdot PB = (PM + MA)(PM - MB)$$
$$= (PM + MA)(PM - MA)$$
$$= PM^2 - MA^2$$
$$= (OM^2 + PM^2) - (OM^2 + MA^2)$$
$$= OP^2 - r^2.$$

The same calculation applies to the case when P is inside or on the circle, provided that the lengths of the directed segments are signed.

The quantity $OP^2 - r^2$ is called the **power** of P with respect to the circle. It is positive, zero, or negative according as P is outside, on, or inside the circle.

Corollary 1.4 (Intersecting chords theorem). If two chords AB and CD of a circle intersect, extended if necessary, at a point P, then $PA \cdot PB = PC \cdot PD$.

In particular, if the tangent at T intersects AB at P, then $PA \cdot PB = PT^2$.

![Diagram](https://via.placeholder.com/150)

The converse of the intersecting chords theorem is also true.
Theorem 1.5. Given four points A, B, C, D, if the lines AB and CD intersect at a point P such that $PA \cdot PB = PC \cdot PD$ (as signed products), then A, B, C, D are concyclic.

In particular, if P is a point on a line AB, and T is a point outside the line AB such that $PA \cdot PB = PT^2$, then PT is tangent to the circle through A, B, T.

Example 1.5. Let ABC be a triangle with $B = 2C$. Then $b^2 = c(c + a)$.

Construct a parallel through C to the bisector BE, to intersect the extension of AB at F. Then

$$\angle AFC = \angle ABE = \frac{1}{2} \cdot \angle ABC = \angle ACB.$$

This means that AC is tangent to the circle through B, C, F. By the intersecting chord theorem, $AC^2 = AB \cdot AF$, i.e., $b^2 = c(c + a)$.
1.6 Ptolemy’s theorem

Theorem 1.6 (Ptolemy). A convex quadrilateral $ABCD$ is cyclic if and only if

$$AB \cdot CD + AD \cdot BC = AC \cdot BD.$$

Proof. (Necessity) Assume, without loss of generality, that $\angle BAD > \angle ABD$. Choose a point P on the diagonal BD such that $\angle BAP = \angle CAD$. Triangles BAP and CAD are similar, since $\angle ABP = \angle ACD$. It follows that $AB : AC = BP : CD$, and

$$AB \cdot CD = AC \cdot BP.$$

Now, triangles ABC and APD are also similar, since $\angle BAC = \angle BAP + \angle PAC = \angle DAC + \angle PAC = \angle PAD$, and $\angle ACB = \angle ADP$. It follows that $AC : BC = AD : PD$, and

$$BC \cdot AD = AC \cdot PD.$$

Combining the two equations, we have

$$AB \cdot CD + BC \cdot AD = AC(BP + PD) = AC \cdot BD.$$

(Sufficiency). Let $ABCD$ be a quadrilateral satisfying (**). Locate a point P' such that $\angle BAP' = \angle CAD$ and $\angle ABP' = \angle ACD$. Then the triangles ABP and ACD are similar. It follows that

$$AB : AP' : BP' = AC : AD : CD.$$

From this we conclude that

(i) $AB \cdot CD = AC \cdot BP'$, and

(ii) triangles ABC and $AP'D$ are similar since $\angle BAC = \angle P'AD$ and $AB : AC = AP' : AD$.

Consequently, $AC : BC = AD : P'D$, and

$$AD \cdot BC = AC \cdot P'D.$$

Combining the two equations,

$$AC(BP' + P'D) = AB \cdot CD + AD \cdot BC = AC \cdot BD.$$

It follows that $BP' + P'D = BD$, and the point P' lies on diagonal BD. From this, $\angle ABD = \angle ABP' = \angle ACD$, and the points A, B, C, D are concyclic. \qed
Chapter 2

The laws of sines and cosines

2.1 The law of sines

Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC.

$$2R = \frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

Since the area of a triangle is given by $\Delta = \frac{1}{2}bc \sin \alpha$, the circumradius can be written as

$$R = \frac{abc}{4\Delta}.$$
2.2 The orthocenter

Why are the three altitudes of a triangle concurrent?

Let ABC be a given triangle. Through each vertex of the triangle we construct a line parallel to its opposite side. These three parallel lines bound a larger triangle $A'B'C'$. Note that $ABCB'$ and $ACBC'$ are both parallelograms since each has two pairs of parallel sides. It follows that $B'A = BC = AC'$ and A is the midpoint of $B'C'$.

Consider the altitude AX of triangle ABC. Seen in triangle $A'B'C'$, this line is the perpendicular bisector of $B'C'$ since it is perpendicular to $B'C'$ through its midpoint A. Similarly, the altitudes BY and CZ of triangle ABC are perpendicular bisectors of $C'A'$ and $A'B'$. As such, the three lines AX, BY, CZ concur at a point H. This is called the orthocenter of triangle ABC.

Proposition 2.2. The reflections of the orthocenter in the sidelines lie on the circumcircle.

Proof. It is enough to show that the reflection H_a of H in BC lies on the circumcircle. Consider also the reflection O_a of O in BC. Since AH and OO_a are parallel and have the same length $(2R \cos \alpha)$, AOO_aH is a parallelogram. On the other hand, HOO_aH_a is a isosceles trapezoid. It follows that $OH_a = HO_a = AO$, and H_a lies on the circumcircle. \(\square\)
2.3 The law of cosines

Given a triangle ABC, we denote by a, b, c the lengths of the sides BC, CA, AB respectively.

Theorem 2.3 (The law of cosines).

\[
c^2 = a^2 + b^2 - 2ab \cos \gamma.
\]

Proof. Let AX be the altitude on BC.

\[
c^2 = BX^2 + AX^2 = (a - b \cos \gamma)^2 + (b \sin \gamma)^2 = a^2 - 2ab \cos \gamma + b^2 (\cos^2 \gamma + \sin^2 \gamma) = a^2 + b^2 - 2ab \cos \gamma.
\]

Theorem 2.4 (Stewart). Let X be a point on the sideline BC of triangle ABC.

\[
a \cdot AX^2 = BX \cdot b^2 + XC \cdot c^2 - a \cdot BX \cdot XC.
\]

Here, the lengths of the directed segments on the line BC are signed. Equivalently, if $BX : XC = \lambda : \mu$, then

\[
AX^2 = \frac{\lambda b^2 + \mu c^2}{\lambda + \mu} - \frac{\lambda \mu a^2}{(\lambda + \mu)^2}.
\]

Proof. Use the cosine formula to compute the cosines of the angles AXB and AXC, and note that $\cos AXC = -\cos AXB$.

\[\square\]
Example 2.1. (Napoleon’s theorem). If similar isosceles triangles XBC, YCA and ZAB (of base angle θ) are constructed externally on the sides of triangle ABC, the lengths of the segments YZ, ZX, XZ can be computed easily. For example, in triangle AYZ, $AY = \frac{b}{2} \sec \theta$, $AZ = \frac{c}{2} \sec \theta$ and $\angle YAZ = \alpha + 2\theta$.

By the law of cosines,

$$YZ^2 = AY^2 + AZ^2 - 2AY \cdot AZ \cdot \cos YAZ$$

$$= \frac{\sec^2 \theta}{4} (b^2 + c^2 - 2bc \cos(\alpha + 2\theta))$$

$$= \frac{\sec^2 \theta}{4} (b^2 + c^2 - 2bc \cos \alpha \cos 2\theta + 2bc \sin \alpha \sin 2\theta)$$

$$= \frac{\sec^2 \theta}{4} (b^2 + c^2 - (b^2 + c^2 - a^2) \cos 2\theta + 4\Delta \sin 2\theta)$$

$$= \frac{\sec^2 \theta}{4} (a^2 \cos 2\theta + (b^2 + c^2)(1 - \cos 2\theta) + 4\Delta \sin 2\theta).$$

Likewise, we have

$$ZX^2 = \frac{\sec^2 \theta}{4} (b^2 \cos 2\theta + (c^2 + a^2)(1 - \cos 2\theta) + 4\Delta \sin 2\theta)$$

$$XY^2 = \frac{\sec^2 \theta}{4} (c^2 \cos 2\theta + (a^2 + b^2)(1 - \cos 2\theta) + 4\Delta \sin 2\theta).$$

It is easy to note that $YZ = ZX = XY$ if and only if $\cos 2\theta = \frac{1}{2}$, i.e., $\theta = 30^\circ$. In this case, the points X, Y, Z are the centers of equilateral triangles erected externally on BC, CA, AB respectively. The same conclusion holds if the equilateral triangles are constructed internally on the sides. This is the famous Napoleon theorem.

Theorem 2.5 (Napoleon). If equilateral triangles are constructed on the sides of a triangle, either all externally or all internally, then their centers are the vertices of an equilateral triangle.
Example 2.2. (Orthogonal circles) Given three points A, B, C that form an acute-angled triangle, construct three circles with these points as centers that are mutually orthogonal to each other.

Let $BC = a$, $CA = b$, and $AB = c$. If these circles have radii R_a, R_b, R_c respectively, then

$$R_b^2 + R_c^2 = a^2, \quad R_c^2 + R_a^2 = b^2, \quad R_a^2 + R_b^2 = c^2.$$

From these,

$$R_a^2 = \frac{1}{2}(b^2 + c^2 - a^2), \quad R_b^2 = \frac{1}{2}(c^2 + a^2 - b^2), \quad R_c^2 = \frac{1}{2}(a^2 + b^2 - c^2).$$

These are all positive since ABC is an acute triangle. Consider the perpendicular foot E of B on AC. Note that $AE = c \cos A$, so that $R_a^2 = \frac{1}{2}(b^2 + c^2 - a^2) = bc \cos A = AC \cdot AE$. It follows if we extend BE to intersect at Y the semicircle constructed externally on the side AC as diameter, then, $AY^2 = AC \cdot AE = R_a^2$. Therefore we have the following simple construction of these circles.

(1) With each side as diameter, construct a semicircle externally of the triangle.
(2) Extend the altitudes of the triangle to intersect the semicircles on the same side. Label these X, Y, Z on the semicircles on BC, CA, AB respectively. These satisfy $AY = AZ$, $BZ = BX$, and $CX = CY$.
(3) The circles $A(Y)$, $B(Z)$ and $C(X)$ are mutually orthogonal to each other.
2.4 The centroid

Let E and F be the midpoints of AC and AB respectively, and G the intersection of the medians BE and CF.

Construct the parallel through C to BE, and extend AG to intersect BC at D, and this parallel at H.

By the converse of the midpoint theorem, G is the midpoint of AH, and $HC = 2 \cdot GE$

Join BH. By the midpoint theorem, $BH // CF$. It follows that $BHCG$ is a parallelogram. Therefore, D is the midpoint of (the diagonal) BC, and AD is also a median of triangle ABC. We have shown that the three medians of triangle ABC intersect at G, which we call the centroid of the triangle.

Furthermore,

$$AG = GH = 2GD,$$

$$BG = HC = 2GE,$$

$$CG = HB = 2GF.$$

The centroid G divides each median in the ratio $2 : 1$.

Theorem 2.6 (Apollonius). If m_a denotes the length of the median on the side BC,

$$m_a^2 = \frac{1}{4}(2b^2 + 2c^2 - a^2).$$

Example 2.3. Suppose the medians BE and CF of triangle ABC are perpendicular. This means that $BC^2 + CG^2 = BC^2$, where G is the centroid of the triangle. In terms of the lengths, we have $\frac{4}{9}m_b^2 + \frac{4}{9}m_c^2 = a^2$; $4(m_b^2 + m_c^2) = 9a^2$; $(2c^2 + 2a^2 - b^2) + (2a^2 + 2b^2 - c^2) = 9a^2$; $b^2 + c^2 = 5a^2$.

This relation is enough to describe, given points B and C, the locus of A for which the medians BE and CF of triangle ABC are perpendicular. Here, however, is a very easy construction: From $b^2 + c^2 = 5a^2$, we have $m_a^2 = \frac{1}{4}(2b^2 + 2c^2 - a^2) = \frac{3}{4}a^2$; $m_a = \frac{3}{2}a$. The locus of A is the circle with center at the midpoint of BC, and radius $\frac{3}{2} \cdot BC$.
2.5 The angle bisector theorem

Theorem 2.7 (Angle bisector theorem). The bisectors of an angle of a triangle divide its opposite side in the ratio of the remaining sides. If AX and AX' respectively the internal and external bisectors of angle BAC, then $BX : XC = c : b$ and $BX' : X'C = c : -b$.

Proof. Construct lines through C parallel to the bisectors AX and AX' to intersect the line AB at Z and Z'.

(1) Note that $\angle AZC = \angle BAX = \angle XAC = \angle ACZ$. This means $AZ = AC$. Clearly, $BX : XC = BA : AZ = BA : AC = c : b$.

(2) Similarly, $AZ' = AC$, and $BX' : X'C = BA : AZ' = BA : -AC = c : -b$.

2.5.1 The lengths of the bisectors

Proposition 2.8. (a) The lengths of the internal and external bisectors of angle A are respectively

$$t_a = \frac{2bc}{b + c} \cos \frac{\alpha}{2} \quad \text{and} \quad t'_a = \frac{2bc}{|b - c|} \sin \frac{\alpha}{2}.$$

Proof. Let AX and AX' be the bisectors of angle A.

(1) Consider the area of triangle ABC as the sum of those of triangles AXC and ABX. We have

$$\frac{1}{2} t_a (b + c) \sin \frac{\alpha}{2} = \frac{1}{2} bc \sin \alpha.$$
The laws of sines and cosines

From this,
\[t_a = \frac{bc}{b+c} \cdot \sin \frac{\alpha}{2} = \frac{2bc}{b+c} \cdot \cos \frac{\alpha}{2}. \]

(2) Consider the area of triangle as the difference between those of \(ABX' \) and \(ACX' \).

Remarks. (1) \(\frac{2bc}{b+c} \) is the harmonic mean of \(b \) and \(c \). It can be constructed as follows. If the perpendicular to \(AX \) at \(X \) intersects \(AC \) and \(AB \) at \(Y \) and \(Z \), then \(AY = AZ = \frac{2bc}{b+c} \).

(2) Applying Stewart’s Theorem with \(\lambda = c \) and \(\mu = \pm b \), we also obtain the following expressions for the lengths of the angle bisectors:

\[t_a^2 = bc \left(1 - \left(\frac{a}{b+c} \right)^2 \right), \]
\[t'_a^2 = bc \left(\left(\frac{a}{b-c} \right)^2 - 1 \right). \]

Example 2.4. (Steiner-Lehmus theorem). A triangle with two equal angle bisectors is isosceles. More precisely, if the bisectors of two angles of a triangle have equal lengths, then the two angles are equal.

Proof. We show that if \(a < b \), then \(t_a > t_b \). Note that from \(a < b \) we conclude

(i) \(\alpha < \beta \) and \(\cos \frac{\alpha}{2} > \cos \frac{\beta}{2} \);
(ii) \(bc > ac, b(c + a) > a(b + c) \);
\[\frac{b}{b+c} > \frac{c}{c+a}, \frac{2bc}{b+c} > \frac{2ca}{c+a}. \]

From (i) and (ii), we have
\[t_a = \frac{2bc}{b+c} \cdot \cos \frac{\alpha}{2} > \frac{2ca}{c+a} \cdot \cos \frac{\beta}{2} = t_b. \]

The same reasoning shows that \(a > b \Rightarrow t_a < t_b \). It follows that if \(t_a = t_b \), then \(a = b \).
2.6 The circle of Apollonius

Theorem 2.9. A and B are two fixed points. For a given positive number $k \neq 1$, the locus of points P satisfying $AP : PB = k : 1$ is the circle with diameter XY, where X and Y are points on the line AB such that $AX : XB = k : 1$ and $AY : YB = k : -1$.

Proof. Since $k \neq 1$, points X and Y can be found on the line AB satisfying the above conditions.

Consider a point P not on the line AB with $AP : PB = k : 1$. Note that PX and PY are respectively the internal and external bisectors of angle APB. This means that angle XPY is a right angle, and P lies on the circle with XY as diameter.

Conversely, let P be a point on this circle. We show that $AP : BP = k : 1$. Let B' be a point on the line AB such that PX bisects angle APB'. Since PA and PB are perpendicular to each other, the line PB is the external bisector of angle APB', and

$$\frac{AY}{YB'} = -\frac{AX}{XB'} = \frac{XA}{XB'} = \frac{AY -XA}{YX}.$$

On the other hand,

$$\frac{AY}{YB} = -\frac{AX}{XB} = \frac{XA}{XB} = \frac{AY -XA}{YX}.$$

Comparison of the two expressions shows that B' coincides with B, and PX is the bisector of angle APB. It follows that $\frac{PA}{PB} = \frac{AX}{XB} = k$. \qed

1If $k = 1$, the locus is clearly the perpendicular bisector of the segment AB.
The laws of sines and cosines
Chapter 3

The tritangent circles

3.1 The incircle

Let the incircle of triangle ABC touch its sides BC, CA, AB at X, Y, Z respectively.

If s denotes the semiperimeter of triangle ABC, then

$$AY = AZ = s - a,$$
$$BZ = BX = s - b,$$
$$CX = CY = s - c.$$

The inradius of triangle ABC is the radius of its incircle. It is given by

$$r = \frac{2\Delta}{a + b + c} = \frac{\Delta}{s}.$$
Example 3.1. If triangle ABC has a right angle at C, then the inradius $r = s - c$.

It follows that if d is the diameter of the incircle, then $a + b = c + d$.

Example 3.2. An equilateral triangle of side $2a$ is partitioned symmetrically into a quadrilateral, an isosceles triangle, and two other congruent triangles. If the inradii of the quadrilateral and the isosceles triangle are equal, find this inradius.1

Suppose each side of the equilateral triangle has length 2, each of the congruent circles has radius r, and $\angle ACX = \theta$.

(i) From triangle AXC, $r = \frac{2}{\cot 30^\circ + \cot \theta}$.

(ii) Note that $\angle BCY = \frac{1}{2}(60^\circ - 2\theta) = 30^\circ - \theta$. It follows that $r = \tan(30^\circ - \theta) = \frac{1}{\cot(30^\circ - \theta)} = \frac{\cot \theta - \cot 30^\circ}{\cot 30^\circ \cot \theta + 1}$.

By putting $\cot \theta = x$, we have $\frac{2}{\sqrt{3} + x} = \frac{x - \sqrt{3}}{\sqrt{3} x + 1}$; $x^2 - 3 = 2\sqrt{3}x + 2$; $x^2 - 2\sqrt{3}x - 5 = 0$, and $x = \sqrt{3} + 2\sqrt{2}$. (The negative root is rejected). From this, $r = \frac{2}{\sqrt{3} + x} = \frac{1}{\sqrt{3} + \sqrt{2}} = \sqrt{3} - \sqrt{2}$.

To construct the circles, it is enough to mark Y on the altitude through A such that $AY = \sqrt{3} - r = \sqrt{2}$. The construction is now evident.

$^1(\sqrt{3} - \sqrt{2})a.$
Example 3.3. (Conway’s circle). Given triangle ABC, extend
(i) CA and BA to Y_a and Z_a such that $AY_a = AZ_a = a,$
(ii) AB and CB to Z_b and X_b such that $BZ_b = BX_b = b,$
(iii) BC and AC to X_c and Y_c such that $CX_c = CY_c = c.$

The six points $X_b, X_c, Y_c, Y_a, Z_a, Z_b$ are concyclic. The circle containing them has center I and radius $\sqrt{r^2 + s^2}$.

Proof. Let the incircle be tangent to BC at X. $BX = s - b \implies X_bX = b + (s - b) = s.$
From this, $IX_b^2 = r^2 + s^2$. Similarly, each of the remaining five points is at the same distance from I. They lie on a circle, center I, radius $\sqrt{r^2 + s^2}$.
3.2 Euler’s formula

Theorem 3.1 (Euler’s formula). \(OI^2 = R^2 - 2Rr \)

\[OI^2 = R^2 - 2Rr \]

\[OI^2 = R^2 - 2Rr \]

Proof. Extend \(AI \) to intersect the circumcircle at \(M \). Since \(\angle BAM = \angle MAC = \frac{A}{2} \), \(M \) is the midpoint of the arc \(BC \) of the circumcircle. Note that

\[\angle MBI = \angle MBC + \angle CBI = \angle MAC + \angle CBI = \angle BAI + \angle IBA = \angle BIM. \]

It follows that \(IM = BM \). By the law of sines, \(BM = 2R \sin \frac{A}{2} \). Since \(AI = \frac{r}{\sin \frac{A}{2}} \),

\[AI \cdot IM = 2Rr. \]

This is equal to the power of \(I \) with respect to the circumcircle, namely, \(= R^2 - OI^2 \). Therefore, \(OI^2 = R^2 - 2Rr \).

\[\square \]

Corollary 3.2. \(R \geq 2r; \) equality holds if and only if the triangle is equilateral.
3.3 Steiner’s porism

Given a triangle ABC with incircle (I) and circumcircle O, let A' be an arbitrary point on circumcircle. Join A' to I, to intersect the circumcircle again at M', and let $A'Y', A'Z'$ be the tangents to the incircle. Construct a circle, center M', through I to intersect the circumcircle at B' and C'.

Denote by θ between $A'I$ and each tangent.

It is known that $A'I \cdot IM' = 2Rr$ (power of incenter in (O)). Since $A'I = \frac{r}{\sin \theta}$, we have $IM' = 2R \sin \theta$. Therefore, $M'B' = M'C' = 2R \sin \theta$, and by the law of sines, $\angle B'A'M = \angle C'A'M = \theta$. It follows that $A'B'$ and $A'C'$ are tangent to the incircle (I). Since M' is the midpoint of the arc $B'C'$, the circle $M'(B')$ passes through the incenter of triangle $A'B'C'$. This means that I is the incenter, and (I) the incircle of triangle $A'B'C'$.
3.4 The excircles

The internal bisector of each angle and the external bisectors of the remaining two angles are concurrent at an excenter of the triangle. An excircle can be constructed with this as center, tangent to the lines containing the three sides of the triangle.

The exradii of a triangle with sides a, b, c are given by

$$r_a = \frac{\Delta}{s-a}, \quad r_b = \frac{\Delta}{s-b}, \quad r_c = \frac{\Delta}{s-c}.$$

The areas of the triangles I_aBC, I_aCA, and I_aAB are $\frac{1}{2}ar_a$, $\frac{1}{2}br_a$, and $\frac{1}{2}cr_a$ respectively. Since

$$\Delta = -\Delta I_aBC + \Delta I_aCA + \Delta I_aAB,$$

we have

$$\Delta = \frac{1}{2}r_a(-a+b+c) = r_a(s-a),$$

from which $r_a = \frac{\Delta}{s-a}$.
3.5 Heron’s formula for the area of a triangle

Consider a triangle ABC with area Δ. Denote by r the inradius, and r_a the radius of the excircle on the side BC of triangle ABC. It is convenient to introduce the semiperimeter $s = \frac{1}{2}(a + b + c)$.

(1) From the similarity of triangles AIY and $AI'Y'$,

$$
\frac{r}{r_a} = \frac{s - a}{s}.
$$

(2) From the similarity of triangles CIY and $I'CY'$,

$$
r \cdot r_a = (s - b)(s - c).
$$

(3) From these,

$$
\begin{align*}
 r &= \sqrt{\frac{(s - a)(s - b)(s - c)}{s}}, \\
 r_a &= \sqrt{\frac{s(s - b)(s - c)}{s - a}}.
\end{align*}
$$

Theorem 3.3 (Heron’s formula).

$$
\Delta = \sqrt{s(s - a)(s - b)(s - c)}.
$$

Proof. $\Delta = rs$. \qed

Proposition 3.4.

$$
\begin{align*}
 \tan \frac{\alpha}{2} &= \sqrt{\frac{(s - b)(s - c)}{s(s - a)}}, \\
 \cos \frac{\alpha}{2} &= \sqrt{\frac{s(s - a)}{bc}}, \\
 \sin \frac{\alpha}{2} &= \sqrt{\frac{(s - b)(s - c)}{bc}}.
\end{align*}
$$
The tritangent circles
Chapter 4

The arbelos

4.1 Archimedes’ twin circles

Theorem 4.1 (Archimedes). The two circles each tangent to CP, the largest semicircle AB and one of the smaller semicircles have equal radii t, given by

$$t = \frac{ab}{a+b}.$$

Proof. Consider the circle tangent to the semicircles $O(a+b)$, $O_1(a)$, and the line PQ. Denote by t the radius of this circle. Calculating in two ways the height of the center of this circle above the line AB, we have

$$(a + b - t)^2 - (a - b - t)^2 = (a + t)^2 - (a - t)^2.$$

From this,

$$t = \frac{ab}{a+b}.$$

The symmetry of this expression in a and b means that the circle tangent to $O(a+b)$, $O_2(b)$, and PQ has the same radius t.

\qed
4.1.1 Harmonic mean and the equation $\frac{1}{a} + \frac{1}{b} = \frac{1}{t}$

The harmonic mean of two quantities a and b is $\frac{2ab}{a+b}$. In a trapezoid of parallel sides a and b, the parallel through the intersection of the diagonals intercepts a segment whose length is the harmonic mean of a and b. We shall write this harmonic mean as $2t$, so that $\frac{1}{a} + \frac{1}{b} = \frac{1}{t}$.

Here is another construction of t, making use of the formula for the length of an angle bisector in a triangle. If $BC = a$, $AC = b$, then the angle bisector CZ has length $t_c = \frac{2ab}{a+b} \cos \frac{C}{2} = 2t \cos \frac{C}{2}$.

The length t can therefore be constructed by completing the rhombus $CXZY$ (by constructing the perpendicular bisector of CZ to intersect BC at X and AC at Y). In particular, if the triangle contains a right angle, this trapezoid is a square.

4.1.2 Construction of the Archimedean twin circles

Construct the circle $P(C_3)$ to intersect the diameter AB at P_1 and P_2 so that P_1 is on AP and P_2 is on PB. The center C_1 respectively C_2 is the intersection of the circle $O_1(P_2)$ respectively $O_2(P_1)$ and the perpendicular to AB at P_1 respectively P_2.
4.2 The incircle

Theorem 4.2 (Archimedes). The incircle of the arbelos has radius

\[\rho = \frac{r_1 r_2 (r_1 + r_2)}{r_1^2 + r_1 r_2 + r_2^2}. \]

Proof. Let \(\angle COO_3 = \theta \). By the law of cosines, we have

\[
\begin{align*}
(r_1 + \rho)^2 &= (r_1 + r_2 - \rho)^2 + r_2^2 + 2r_2(r_1 + r_2 - \rho) \cos \theta, \\
(r_2 + \rho)^2 &= (r_1 + r_2 - \rho)^2 + r_1^2 - 2r_1(r_1 + r_2 - \rho) \cos \theta.
\end{align*}
\]

Eliminating \(\theta \), we have

\[r_1 (r_1 + \rho) + r_2 (r_2 + \rho) = (r_1 + r_2) (r_1 + r_2 - \rho)^2 + r_1 r_2^2 + r_2 r_1^2. \]

The coefficients of \(\rho^2 \) on both sides are clearly the same. This is a linear equation in \(\rho \):

\[r_1^3 + r_2^3 + 2(r_1^2 + r_2^2) \rho = (r_1 + r_2)^3 + r_1 r_2 (r_1 + r_2) - 2(r_1 + r_2)^2 \rho, \]

from which

\[4(r_1^2 + r_1 r_2 + r_2^2) \rho = (r_1 + r_2)^3 + r_1 r_2 (r_1 + r_2) - (r_1^3 + r_2^3) = 4r_1 r_2 (r_1 + r_2), \]

and \(\rho \) is as above. \(\square \)
4.2.1 Construction of the incircle of the arbelos

In [?], Bankoff published the following remarkable theorem which gives a construction of the incircle of the arbelos of the incircle, much simpler than the one we designed before from Archimedes’ proof. The simplicity of the construction is due to the existence of a circle congruent to Archimedes’ twin circles.

Theorem 4.3 (Bankoff). *The points of tangency of the incircle of the arbelos with the semicircles (AC) and (CB), together with C, are the points of tangency of the incircle (W₃) of triangle O₁O₂O₃ with the sides of the triangle. This circle (W₃) is congruent to Archimedes’ twin circles (W₁) and (W₂).*

Proof. Since O₁Q = O₁C, O₂C = O₂R, and O₃R = O₃Q, the points C, Q, R are the points of tangency of the incircle of triangle O₁O₂O₃ with its sides. The semi-perimeter of the triangle is

\[s = r_1 + r_2 + \rho = r_1 + r_2 + \frac{r_1 r_2 (r_1 + r_2)}{r_1^3 + r_2 r_2 + r_2^2} = \frac{(r_1 + r_2)^3}{r_1^3 + r_2 r_2 + r_2^2} = \frac{(r_1 + r_2)^2 \rho}{r_1 r_2}. \]

The inradius of the triangle is the square root of

\[\frac{r_1 r_2 \rho}{s} = \frac{r_1^2 r_2^2}{(r_1 + r_2)^2} = r^2. \]

It follows that this inradius is \(t \). The incircle of triangle O₁O₂O₃ is congruent to Archimedes’ twin circles. \(\Box \)
Construction. Let M and N be the midpoints of the semicircles (AC) and (CB) respectively. Construct

1. the lines O_1N and O_2M to intersect at W_3,
2. the circle with center W_3, passing through C to intersect the semicircle (AC) at Q and (CB) at R,
3. the lines O_1Q and O_2R to intersect at O_3.

The circle with center O_3 passing through Q touches the semicircle (CB) at R and also the semicircle (AB).
4.2.2 Alternative constructions of the incircle

Theorem 4.4 (Bankoff). Let P be the intersection (apart from C) of the circumcircles of the squares on AC and CB. Let Q be the intersection (apart from C) of the circumcircle of the square on CB and the semicircle (AC), and R that of the circumcircle of the square on AB and the semicircle (CB). The points P, Q, R are the points of tangency of the incircle of the arbelos with the semicircles.

Proposition 4.5. The intersection S of the lines AN and BM also lies on the incircle of the arbelos, and the line CS intersects (AB) at P.
Construction. Let L' be the “lowest point” of the circle (AB). Construct
(1) the line $L'C$ to intersect the semicircle (AB) at P,
(2) the circle, center L', through A and B, to intersect the semicircles (AC) and (CB) at Q and R.

Proposition 4.6. Let X be the midpoint of the side of the square on AC opposite to AC, and Y that of the side of the square on CB opposite to CB. The center O_3 of the incircle of the arbelos is the intersection of the lines AY and BX.
4.3 Archimedean circles

We shall call a circle Archimedean if it is congruent to Archimedes’ twin circle, i.e., with radius \(t = \frac{r_1r_2}{r_1 + r_2} \), and has further remarkable geometric properties.

1. (van Lamoen) The circle \((W_3)\) is tangent internally to the midway semicircle \((O_1O_2)\) at a point on the segment \(MN\). \(^1\)

2. (van Lamoem) The circle tangent to \(AB\) at \(O\) and to the midway semicircle is Archimedean. \(^2\)

3. (Schoch) Let \(MN\) intersect \(CD\) and \(OL\) at \(Q\) and \(K\) respectively. The smallest circles through \(Q\) and \(K\) tangent to the semicircle \(AB\) are Archimedean.

\(^1\)van Lamoen, June 10, 1999.
\(^2\)van Lamoen, June 10, 1999.
4. (a) The circle tangent to \((AB)\) and to the common tangent of \((AC)\) and \((CB)\) is Archimedean.
 (b) The smallest circle through \(C\) tangent to \(AB\) is Archimedean.

5. Let \(EF\) be the common tangent of the semicircles \((AC)\) and \((CB)\). The smallest circles through \(E\) and \(F\) tangent to \(CD\) are Archimedean.

6. (Schoch) Let \(X\) and \(Y\) be the intersections of the semicircle \((AB)\) with the circles through \(C\), with centers \(A\) and \(B\) respectively. The smallest circle through \(X\) and \(Y\) tangent to \(CD\) are Archimedean.
7. (van Lamoen) Let Y and Z be the intersections of the midway semicircle with the semicircles (AC) and (CB). The circles with centers Y and Z, each tangent to the line CD, are Archimedean.

8. (Schoch) (a) The circle tangent to the semicircle (AB) and the circular arcs, with centers A and B respectively, each passing through C, is Archimedean.
(b) The circle with center on the Schoch line and tangent to both semicircles (AC) and (CB) is Archimedean.

9. (Woo) Let α be a positive real number. Consider the two circular arcs, each passing through C and with centers $(-\alpha r_1, 0)$ and $(\alpha r_2, 0)$ respectively. The circle with center U_α on the Schoch line tangent to both of these arcs is Archimedean.

The Woo circle (U_α) which is tangent externally to the semicircle (AB) touches it at D (the intersection with the common tangent of (AC) and (CB)).
10. (Power) Consider an arbelos with inner semicircles C_1 and C_2 of radii a and b, and outer semicircle C of radius $a + b$. It is known the Archimedean circles have radius $t = \frac{ab}{a+b}$. Let Q_1 and Q_2 be the “highest” points of C_1 and C_2 respectively.

A circle tangent to (O) internally and to OQ_1 at Q_1 (or OQ_2 at Q_2) is Archimedean.

11. (van Lamoen)

12. (Bui)
5.1 Menelaus’ theorem

Theorem 5.1 (Menelaus). Given a triangle ABC with points X, Y, Z on the side lines BC, CA, AB respectively, the points X, Y, Z are collinear if and only if

$$\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = -1.$$

Proof. (\implies) Let W be the point on AC such that $BW//XY$. Then,

$$\frac{BX}{XC} = \frac{WY}{YC}, \quad \text{and} \quad \frac{AZ}{ZB} = \frac{AY}{YW}.$$

It follows that

$$\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = \frac{WY}{YC} \cdot \frac{CY}{YA} \cdot \frac{AY}{YW} = -1.$$

(\impliedby) Suppose the line joining X and Z intersects AC at Y'. From above,

$$\frac{BX}{XC} \cdot \frac{CY'}{Y'A} \cdot \frac{AZ}{ZB} = -1 = \frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB}.$$

It follows that

$$\frac{CY'}{Y'A} = \frac{CY}{YA}.$$

The points Y' and Y divide the segment CA in the same ratio. These must be the same point, and X, Y, Z are collinear. \qed
Example 5.1. The external angle bisectors of a triangle intersect their opposite sides at three collinear points.

Proof. If the external bisectors are AX', BY', CZ' with X', Y', Z' on BC, CA, AB respectively, then

$$\frac{BX'}{X'C} = -\frac{c}{b}, \quad \frac{CY'}{Y'A} = -\frac{a}{c}, \quad \frac{AZ'}{Z'B} = -\frac{b}{a}.$$

It follows that $\frac{BX'}{X'C} \cdot \frac{CY'}{Y'A} \cdot \frac{AZ'}{Z'B} = -1$ and the points X', Y', Z' are collinear. \qed
5.2 Centers of similitude of two circles

Given two circles $O(R)$ and $I(r)$, whose centers O and I are at a distance d apart, we animate a point X on $O(R)$ and construct a ray through I oppositely parallel to the ray OX to intersect the circle $I(r)$ at a point Y. The line joining X and Y intersects the line OI of centers at a point T which satisfies

$$OT : IT = OX : IY = R : r.$$

This point T is independent of the choice of X. It is called the internal center of similitude, or simply the insimilicenter, of the two circles.

If, on the other hand, we construct a ray through I directly parallel to the ray OX to intersect the circle $I(r)$ at Y', the line XY' always intersects OI at another point T'. This is the external center of similitude, or simply the exsimilicenter, of the two circles. It divides the segment OI in the ratio $OT' : T'I = R : -r$.

5.2.1 Desargue’s theorem

Given three circles with centers A, B, C and distinct radii, show that the exsimilicenters of the three pairs of circles are collinear.
5.3 Ceva’s theorem

Theorem 5.2 (Ceva). Given a triangle ABC with points X, Y, Z on the side lines BC, CA, AB respectively, the lines AX, BY, CZ are concurrent if and only if

$$\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = +1.$$

Proof. (\implies) Suppose the lines AX, BY, CZ intersect at a point P. Consider the line BPY cutting the sides of triangle CAX. By Menelaus’ theorem,

$$\frac{CY}{YA} \cdot \frac{AP}{PX} \cdot \frac{XB}{BC} = -1, \quad \text{or} \quad \frac{CY}{YA} \cdot \frac{PA}{XP} \cdot \frac{BX}{BC} = +1.$$

Also, consider the line CPZ cutting the sides of triangle ABX. By Menelaus’ theorem again,

$$\frac{AZ}{ZB} \cdot \frac{BC}{CX} \cdot \frac{XP}{PA} = -1, \quad \text{or} \quad \frac{AZ}{ZB} \cdot \frac{BC}{XC} \cdot \frac{XP}{PA} = +1.$$

Multiplying the two equations together, we have

$$\frac{CY}{YA} \cdot \frac{AZ}{ZB} \cdot \frac{BX}{XC} = +1.$$

(\impliedby) Exercise. \qed
5.4 Some triangle centers

5.4.1 The centroid

If D, E, F are the midpoints of the sides BC, CA, AB of triangle ABC, then clearly

$$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1.$$

The medians AD, BE, CF are therefore concurrent. Their intersection is the centroid G of the triangle.

Consider triangle ADC with transversal BGE. By Menelaus’ theorem,

$$-1 = \frac{AG}{GD} \cdot \frac{DB}{BC} \cdot \frac{CE}{EA} = \frac{AG}{GD} \cdot \frac{-1}{2} \cdot \frac{1}{1}.$$

It follows that $AG : GD = 2 : 1$. The centroid of a triangle divides each median in the ratio 2:1.

![Diagram of the centroid](image)

5.4.2 The incenter

Let X, Y, Z be points on BC, CA, AB such that AX, BY, CZ bisect angles BAC, CBA and ACB respectively. Then

$$\frac{AZ}{ZB} = \frac{b}{a}, \quad \frac{BX}{XC} = \frac{c}{b}, \quad \frac{CY}{YA} = \frac{a}{c}.$$

It follows that

$$\frac{AZ}{ZB} \cdot \frac{BX}{XC} \cdot \frac{CY}{YA} = \frac{b}{a} \cdot \frac{c}{b} \cdot \frac{a}{c} = +1,$$

and AX, BY, CZ are concurrent. Their intersection is the incenter of the triangle.

Applying Menelaus’ theorem to triangle ABX with transversal CIZ, we have

$$-1 = \frac{AI}{IX} \cdot \frac{XC}{CB} \cdot \frac{BZ}{ZA} = \frac{AI}{IX} \cdot \frac{-b}{a} \cdot \frac{a}{b + c} \Rightarrow \frac{AI}{IX} = \frac{b + c}{a}.$$

![Diagram of the incenter](image)
5.4.3 The Gergonne point

Let the incircle of triangle ABC be tangent to the sides BC at X, CA at Y, and AB at Z respectively. Since $AY = AZ = s - a$, $BZ = BX = s - b$, and $CX = CY = s - c$, we have

$$\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = \frac{s - b}{s - c} \cdot \frac{s - c}{s - a} \cdot \frac{s - a}{s - b} = 1.$$

By Ceva’s theorem, the lines AX, BY, CZ are concurrent. The intersection is called the Gergonne point G_e of the triangle.

Lemma 5.3. The Gergonne point G_e divides the cevian AX in the ratio

$$\frac{AG_e}{G_eX} = \frac{a(s - a)}{(s - b)(s - c)}.$$

Proof. Applying Menelaus’ theorem to triangle ABX with transversal CG_eZ, we have

$$-1 = \frac{AG_e}{G_eX} \cdot \frac{XC}{CB} \cdot \frac{BZ}{ZA} = \frac{AG_e}{G_eX} \cdot \frac{s - c}{a} \cdot \frac{s - b}{s - a} \quad \Rightarrow \quad \frac{AG_e}{G_eX} = \frac{a(s - a)}{(s - b)(s - c)}.$$

\[\blacksquare\]
5.4.4 The Nagel point

If \(X', Y', Z' \) are the points of tangency of the excircles with the respective sidelines, the lines \(AX', BY', CZ' \) are concurrent by Ceva’s theorem:

\[
\frac{BX'}{X'C} \cdot \frac{CY'}{Y'A} \cdot \frac{AZ'}{Z'B} = \frac{s-c}{s-b} \cdot \frac{s-c}{s-a} \cdot \frac{s-a}{s-b} = 1.
\]

The point of concurrency is the Nagel point \(N_a \).

Lemma 5.4. If the \(A \)-excircle of triangle \(ABC \) touches \(BC \) at \(X' \), then the Nagel point divides the cevian \(AX' \) in the ratio

\[
\frac{AN_a}{N_aX'} = \frac{a}{s-a}.
\]

Proof. Applying Menelaus’ theorem to triangle \(ACX' \) with transversal \(BN_aY' \), we have

\[
-1 = \frac{AN_a}{N_aX'} \cdot \frac{X'B}{BC} \cdot \frac{CY'}{Y'A} = \frac{AN_a}{N_aX'} \cdot \frac{- (s-c)}{a} \cdot \frac{s-a}{s-c} \implies \frac{AN_a}{N_aX'} = \frac{a}{s-a}.
\]
5.5 Isotomic conjugates

Given points X on BC, Y on CA, and Z on AB, we consider their reflections in the midpoints of the respective sides. These are the points X' on BC, Y' on CA and Z' on AB satisfying

$$BX' = XC, BX = X'C; \quad CY' = YA, CY = Y'A; \quad AZ' = ZB, AZ = Z'B.$$

Clearly, AX, BY, CZ are concurrent if and only if AX', BY', CZ' are concurrent.

![Diagram showing isotomic conjugates]

Proof.

$$\left(\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB}\right) \left(\frac{BX'}{XC'} \cdot \frac{CY'}{YA'} \cdot \frac{AZ'}{Z'B}\right) = \left(\frac{BX}{XC} \cdot \frac{BX'}{XC'}\right) \left(\frac{CY}{YA} \cdot \frac{CY'}{YA'}\right) \left(\frac{AZ}{ZB} \cdot \frac{AZ'}{Z'B}\right) = 1.$$

The points of concurrency of the two triads of lines are called isotomic conjugates.
Example 5.2. (The Gergonne and Nagel points)

Example 5.3. (The isotomic conjugate of the orthocenter) Let H^* denote the isotomic conjugate of the orthocenter H. Its traces are the pedals of the reflection of H in O. This latter point is the deLongchamps point L_o.
Example 5.4. (Yff-Brocard points) Consider a point $P = (u : v : w)$ with traces X, Y, Z satisfying $BX = CY = AZ = \mu$. This means that

$$\frac{w}{v + w} = \frac{u}{u + b} = \frac{v}{u + v} = \mu.$$

Elimination of u, v, w leads to

$$0 = \begin{vmatrix} 0 & -\mu & a - \mu \\ b - \mu & 0 & -\mu \\ -\mu & c - \mu & 0 \end{vmatrix} = (a - \mu)(b - \mu)(c - \mu) - \mu^3.$$

Indeed, μ is the unique positive root of the cubic polynomial

$$(a - t)(b - t)(c - t) - t^3.$$

This gives the point

$$P = \left(\left(\frac{c - \mu}{b - \mu} \right)^{\frac{1}{3}} : \left(\frac{a - \mu}{c - \mu} \right)^{\frac{1}{3}} : \left(\frac{b - \mu}{a - \mu} \right)^{\frac{1}{3}} \right).$$

The isotomic conjugate

$$P^* = \left(\left(\frac{b - \mu}{c - \mu} \right)^{\frac{1}{3}} : \left(\frac{c - \mu}{a - \mu} \right)^{\frac{1}{3}} : \left(\frac{a - \mu}{b - \mu} \right)^{\frac{1}{3}} \right)$$

has traces X', Y', Z' that satisfy

$$CX' = AY' = BZ' = \mu.$$

These points are called the Yff-Brocard points. \footnote{P. Yff, An analogue of the Brocard points, Amer. Math. Monthly, 70 (1963) 495 – 501.} They were briefly considered by A. L. Crelle. \footnote{A. L. Crelle, 1815.}
Chapter 6

The Euler line and the nine-point circle

6.1 The Euler line

6.1.1 Inferior and superior triangles

The inferior triangle of ABC is the triangle DEF whose vertices are the midpoints of the sides BC, CA, AB.

The two triangles share the same centroid G, and are homothetic at G with ratio $-1:2$.

The superior triangle of ABC is the triangle $A'B'C'$ bounded by the parallels of the sides through the opposite vertices.

The two triangles also share the same centroid G, and are homothetic at G with ratio $2:-1$.

6.1.2 The orthocenter and the Euler line

The three altitudes of a triangle are concurrent. This is because the line containing an altitude of triangle \(ABC\) is the perpendicular bisector of a side of its superior triangle. The three lines therefore intersect at the circumcenter of the superior triangle. This is the orthocenter of the given triangle.

The circumcenter, centroid, and orthocenter of a triangle are collinear. This is because the orthocenter, being the circumcenter of the superior triangle, is the image of the circumcenter under the homothety \(h(G, -2)\). The line containing them is called the Euler line of the reference triangle (provided it is non-equilateral).

The orthocenter of an acute (obtuse) triangle lies in the interior (exterior) of the triangle. The orthocenter of a right triangle is the right angle vertex.
6.2 The nine-point circle

Theorem 6.1. The following nine points associated with a triangle are on a circle whose center is the midpoint between the circumcenter and the orthocenter:

(i) the midpoints of the three sides,
(ii) the pedals (orthogonal projections) of the three vertices on their opposite sides,
(iii) the midpoints between the orthocenter and the three vertices.

\[\text{Diagram} \]

Proof. (1) Let \(N \) be the circumcenter of the inferior triangle \(DEF \). Since \(DEF \) and \(ABC \) are homothetic at \(G \) in the ratio \(1 : 2 \), \(N, G, O \) are collinear, and \(NG : GO = 1 : 2 \). Since \(HG : GO = 2 : 1 \), the four are collinear, and

\[HN : NG : GO = 3 : 1 : 2, \]

and \(N \) is the midpoint of \(OH \).

(2) Let \(X \) be the pedal of \(H \) on \(BC \). Since \(N \) is the midpoint of \(OH \), the pedal of \(N \) is the midpoint of \(DX \). Therefore, \(N \) lies on the perpendicular bisector of \(DX \), and \(NX = ND \). Similarly, \(NE = NY \), and \(NF = NZ \) for the pedals of \(H \) on \(CA \) and \(AB \) respectively. This means that the circumcircle of \(DEF \) also contains \(X, Y, Z \).

(3) Let \(D', E', F' \) be the midpoints of \(AH, BH, CH \) respectively. The triangle \(D'E'F' \) is homothetic to \(ABC \) at \(H \) in the ratio \(1 : 2 \). Denote by \(N' \) its circumcenter. The points \(N', G, O \) are collinear, and \(N'G : GO = 1 : 2 \). It follows that \(N' = N \), and the circumcircle of \(DEF \) also contains \(D', E', F' \). \(\square \)

This circle is called the **nine-point circle** of triangle \(ABC \). Its center \(N \) is called the nine-point center. Its radius is half of the circumradius of \(ABC \).
Theorem 6.2. Let O_a, O_b, O_c be the reflections of the circumcenter O in the sidelines BC, CA, AB respectively.

1. The circle through O_a, O_b, O_c is congruent to the circumcircle and has center at the orthocenter H.

2. The reflections of H in the sidelines lie on the circumcircle.

Proof. (1) If D is the midpoint of BC, $OO_a = 2OD = AH$. This means that AHO_aO is a parallelogram, and $HO_a = AO$. Similarly, $HO_b = BO$ and $HO_c = CO$ for the other two reflections. Therefore, and H is the center of the circle through O_a, O_b, O_c, and the circle is congruent to the circumcircle.

(2) If H_a is the reflection of H in BC, then HH_aO_AO is a trapezoid symmetric in the line BC. Therefore, $OH_a = HO_a = OA$. This means that H_a lies on the circumcircle; so do H_b and H_c. □
6.3 Distances between triangle centers

6.3.1 Distance between the circumcenter and orthocenter

Proposition 6.3. $OH^2 = R^2(1 - 8 \cos \alpha \cos \beta \cos \gamma)$.

Proof. In triangle AOH, $AO = R$, $AH = 2R \cos \alpha$, and $\angle OAH = |\beta - \gamma|$. By the law of cosines,

\[
OH^2 = R^2(1 + 4 \cos^2 \alpha - 4 \cos \alpha \cos(\beta - \gamma))
= R^2(1 - 4 \cos \alpha (\cos(\beta + \gamma) + \cos(\beta - \gamma)))
= R^2(1 - 8 \cos \alpha \cos \beta \cos \gamma).
\]

\[\square\]
6.3.2 Distance between circumcenter and tritangent centers

Lemma 6.4. If the bisector of angle A intersects the circumcircle at M, then M is the center of the circle through B, I, C, and I_a.

Proof. (1) Since M is the midpoint of the arc BC, $\angle MBC = \angle MCB = \angle MAB$. Therefore,

$$\angle MBI = \angle MBC + \angle CBI = \angle MAB + \angle IBA = \angle MIB,$$

and $MB = MI$. Similarly, $MC = MI$.

(2) On the other hand, since $\angle IBI_a$ and $\angle ICI_a$ are both right angles, the four points B, I, C, I_aM are concyclic, with center at the midpoint of II_A. This is the point M. □

Theorem 6.5 (Euler). (a) $OI^2 = R^2 - 2Rr$.

(b) $OI_a^2 = R^2 + 2Rr_a$.

Proof. (a) Considering the power of I in the circumcircle, we have

$$R^2 - OI^2 = AI \cdot IM = AI \cdot MB = \frac{r}{\sin \frac{\alpha}{2}} \cdot 2R \cdot \sin \frac{\alpha}{2} = 2Rr.$$

(b) Consider the power of I_a in the circumcircle.

Note that $I_aA = \frac{r_a}{\sin \frac{\alpha}{2}}$. Also, $I_aM = MB = 2R \sin \frac{\alpha}{2}$.

$$OI_a^2 = R^2 + I_aA \cdot I_aM$$

$$= R^2 + \frac{r_a}{\sin \frac{\alpha}{2}} \cdot 2R \sin \frac{\alpha}{2}$$

$$= R^2 + 2Rr_a.$$
6.3 Distances between triangle centers

6.3.3 Distance between orthocenter and tritangent centers

Proposition 6.6.

\[HI^2 = 2r^2 - 4R^2 \cos \alpha \cos \beta \cos \gamma, \]
\[HI_a^2 = 2r_a^2 - 4R^2 \cos \alpha \cos \beta \cos \gamma. \]

Proof. In triangle \(AIH \), we have \(AH = 2R \cos \alpha \), \(AI = 4R \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \) and \(\angle HAI = \frac{|\beta - \gamma|}{2} \). By the law of cosines,

\[HI^2 = AH^2 + AI^2 - 2AI \cdot AH \cdot \cos \frac{\beta - \gamma}{2} \]
\[= 4R^2 \left(\cos^2 \alpha + 4 \sin^2 \frac{\beta}{2} \sin^2 \frac{\gamma}{2} - 4 \cos \alpha \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \cos \frac{\beta - \gamma}{2} \right) \]
\[= 4R^2 \left(\cos^2 \alpha + 4 \sin^2 \frac{\beta}{2} \sin^2 \frac{\gamma}{2} - 4 \cos \alpha \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} - 4 \cos \alpha \sin^2 \frac{\beta}{2} \sin^2 \frac{\gamma}{2} \right) \]
\[= 4R^2 \left(\cos^2 \alpha + 4 \sin^2 \frac{\beta}{2} \sin^2 \frac{\gamma}{2} - 4 \cos \alpha \sin \beta \sin \gamma - 4 \left(1 - 2 \sin^2 \frac{\alpha}{2} \right) \sin^2 \frac{\beta}{2} \sin^2 \frac{\gamma}{2} \right) \]
\[= 4R^2 \left(\cos \alpha (\cos \alpha - \sin \beta \sin \gamma) + 8 \sin^2 \frac{\alpha}{2} \sin^2 \frac{\beta}{2} \sin^2 \frac{\gamma}{2} \right) \]
\[= 4R^2 \left(- \cos \alpha \cos \beta \cos \gamma + 8 \sin^2 \frac{\alpha}{2} \sin^2 \frac{\beta}{2} \sin^2 \frac{\gamma}{2} \right) \]
\[= 2r^2 - 4R^2 \cos \alpha \cos \beta \cos \gamma. \]
(2) In triangle $\triangle AH_I$, $AI_a = 4R \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$.

By the law of cosines, we have

\[
HI_a^2 = AH^2 + AI_a^2 - 2AH \cdot AI_a \cdot \cos \frac{\beta - \gamma}{2}
\]

\[
= 4R^2 \left(\cos^2 \alpha + 4 \cos^2 \frac{\beta}{2} \cos^2 \frac{\gamma}{2} - 4 \cos \alpha \cos \frac{\beta}{2} \cos \frac{\gamma}{2} \cos \frac{\beta - \gamma}{2} \right)
\]

\[
= 4R^2 \left(\cos^2 \alpha + 4 \cos^2 \frac{\beta}{2} \cos^2 \frac{\gamma}{2} - 4 \cos \alpha \cos^2 \frac{\beta}{2} \cos^2 \frac{\gamma}{2} - 4 \cos \alpha \cos \frac{\beta}{2} \cos \frac{\gamma}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \right)
\]

\[
= 4R^2 \left(\cos^2 \alpha + 4 \cos^2 \frac{\beta}{2} \cos^2 \frac{\gamma}{2} - 4(1 - 2 \sin^2 \frac{\alpha}{2}) \cos^2 \frac{\beta}{2} \cos^2 \frac{\gamma}{2} - \cos \alpha \sin \beta \sin \gamma \right)
\]

\[
= 4R^2 \left(\cos \alpha (\cos \alpha - \sin \beta \sin \gamma) + 8 \sin^2 \frac{\alpha}{2} \cos^2 \frac{\beta}{2} \cos^2 \frac{\gamma}{2} \right)
\]

\[
= 4R^2 \left(- \cos \alpha \cos \beta \cos \gamma + 8 \sin^2 \frac{\alpha}{2} \cos^2 \frac{\beta}{2} \cos^2 \frac{\gamma}{2} \right)
\]

\[
= 2r_a^2 - 4R^2 \cos \alpha \cos \beta \cos \gamma.
\]
6.4 Feuerbach’s theorem

Theorem 6.7 (Feuerbach). The nine-point circle is tangent internally to the incircle and externally to each of the excircles.

Proof. (1) Since N is the midpoint of OH, IN is a median of triangle IOH. By Apollonius’ theorem,

$$NI^2 = \frac{1}{2}(IH^2 + OI^2) - \frac{1}{4}OH^2$$

$$= \frac{1}{4}R^2 - Rr + r^2$$

$$= \left(\frac{R}{2} - r\right)^2.$$

Therefore, NI is the difference between the radii of the nine-point circle and the incircle. This shows that the two circles are tangent to each other internally.

(2) Similarly, in triangle I_aOH,

$$NI_a^2 = \frac{1}{2}(HI_a^2 + OI_a^2) - \frac{1}{4}OH^2$$

$$= \frac{1}{4}R^2 + Rr_a + r_a^2$$

$$= \left(\frac{R}{2} + r_a\right)^2.$$

This shows that the distance between the centers of the nine-point and an excircle is the sum of their radii. The two circles are tangent externally.

The point of tangency F_e of the incircle and the nine-point circle is called the Feuerbach point.
The Euler line and the nine-point circle

[Diagram showing geometric relationships and points A, B, C, Ia, Ib, Ic, N, F, Fa, Fb, Fe, Fc, Aa, Ab, Ac, Ba, Bc, Ca]
Chapter 7

Isogonal conjugates

7.1 Directed angles

A reference triangle ABC in a plane induces an orientation of the plane, with respect to which all angles are signed. For two given lines L and L', the directed angle $\angle(L, L')$ between them is the angle of rotation from L to L' in the induced orientation of the plane. It takes values of modulo π. The following basic properties of directed angles make many geometric reasoning simple without the reference of a diagram.

Theorem 7.1.

1. $\angle(L', L) = -\angle(L, L').$
2. $\angle(L_1, L_2) + \angle(L_2, L_3) = \angle(L_1, L_3)$ for any three lines L_1, L_2 and L_3.
3. Four points P, Q, X, Y are concyclic if and only if $\angle(PX, XQ) = \angle(PY, YQ)$.

Remark. In calculations with directed angles, we shall slightly abuse notations by using the equality sign instead of the sign for congruence modulo π. It is understood that directed angles are defined up to multiples of π. For example, we shall write $\beta + \gamma = -\alpha$ even though it should be more properly $\beta + \gamma = \pi - \alpha$ or $\beta + \gamma \equiv -\alpha \mod \pi$.

Exercise

1. If a, b, c are the sidelines of triangle ABC, then $\angle(a, b) = -\gamma$ etc.
7.2 Isogonal conjugates

Let P be a given point. Consider the reflections of the cevians AP, BP, CP in the respective bisectors of angles A, B, C, i.e., By Ceva’s theorem, these reflections are concurrent. Their intersection is the isogonal conjugate of P.

Let P and Q be isogonal conjugates, AP and AQ intersecting BC at X and X' respectively. Then

$$\frac{BX}{XC} \cdot \frac{BX'}{X'C} = \frac{c^2}{b^2}.$$

Example 7.1. The incenter is the isogonal conjugate of itself. The same is true for the excenters.

Example 7.2. (The circumcenter and orthocenter) For a given triangle with circumcenter O, the line OA and the altitude through A are isogonal lines, similarly for the circumradii and altitudes through B and C. Since the circumradii are concurrent at O, the altitudes also are concurrent. Their intersection is the orthocenter H, which is the isogonal conjugate of O.
7.3 The symmedian point and the centroid

The isogonal lines of the medians are called the **symmedians**. The isogonal conjugate of the centroid G is called the **symmedian point** K of the triangle.

Consider triangle ABC together with its *tangential triangle* $A'B'C'$, the triangle bounded by the tangents of the circumcircle at the vertices.

Since A' is equidistant from B and C, we construct the circle $A'(B) = A'(C)$ and extend the sides AB and AC to meet this circle again at Z and Y respectively. Note that

$$\angle(A'Y, A'B') = \pi - 2(\pi - \alpha - \gamma) = \pi - 2\beta,$$
and similarly, $\angle(A'C', A'Z') = \pi - 2\gamma$. Since $\angle(A'B', A'C') = \pi - 2\alpha$, we have

$$\angle(AY, A'Z) = \angle(AY, A'B') + \angle(A'B', A'C') + \angle(A'C', A'Z)$$

$$= (\pi - 2\beta) + (\pi - 2\alpha) + (\pi - 2\gamma)$$

$$= \pi$$

$$\equiv 0 \mod \pi.$$ This shows that Y, A' and Z' are collinear, so that

(i) AA' is a median of triangle AYZ,

(ii) AYZ and ABC are similar.

It follows that AA' is the isogonal line of the A-median, i.e., a symmedian. Similarly, the BB' and CC' are the symmedians isogonal to B- and C-medians. The lines AA', BB', CC' therefore intersect at the isogonal conjugate of the centroid G.
7.4 Isogonal conjugates of the Gergonne and Nagel points

7.4.1 The Gergonne point and the insimilicenter T_+

Consider the intouch triangle DEF of triangle ABC.

(1) If D' is the reflection of D in the bisector AI, then
(i) D' is a point on the incircle, and
(ii) the lines AD and AD' are isogonal with respect to A.

(2) Likewise, E' and F' are the reflections of E and F in the bisectors BI and CI respectively, then
(i) these are points on the incircle,
(ii) the lines BE' and CF' are isogonals of BE and CF with respect to angles B and C.

Therefore, the lines AD', BE', and CF' concur at the isogonal conjugate of the Gergonne point.

(3) In fact, $E'F'$ is parallel to BC.

This follows from
\[(ID, IE') = (ID, IE) + (IE, IE')\]
\[= (ID, IE) + 2(IE, IB)\]
\[= (ID, IE) + 2((IE, AC) + (AC, IB))\]
\[= (ID, IE) + 2(AC, IB) \quad \text{since} \ (IE, AC) = \frac{\pi}{2}\]
\[= (\pi - \gamma) + 2 \left(\gamma + \frac{\beta}{2} \right)\]
\[= \beta + \gamma = -\alpha \quad \text{(mod \(\pi\));}\]

\[(ID, IF') = (ID, IF) + (IF, IF')\]
\[= (ID, IF) + 2(IF, IC)\]
\[= (ID, IF) + 2((IF, AB) + (AB, IC))\]
\[= (ID, IF) + 2(AB, IC) \quad \text{since} \ (IF, AB) = \frac{\pi}{2}\]
\[= - (\pi - \beta) - 2 \left(\beta + \frac{\gamma}{2} \right)\]
\[= - (\beta + \gamma) = \alpha \quad \text{(mod \(\pi\))}\]

Since \(E'\) and \(F'\) are on the incircle, and \(ID \perp BC\), it follows that \(E'F'\) is parallel to \(BC\).

(4) Similarly, \(F'D'\) and \(D'E'\) are parallel to \(CA\) and \(AB\) respectively. It follows that \(D'E'F'\) is homothetic to \(ABC\).

The ratio of homothety is \(r : R\). Therefore, the center of homothety is the point \(T_+\) which divides \(OI\) in the ratio \(R : r\). This is the internal center of similitude, or simply the insimilicenter of \((O)\) and \((I)\).
7.4 Isogonal conjugates of the Gergonne and Nagel points

7.4.2 The Nagel point and the exsimilicenter T_-

The isogonal conjugate of the Nagel point is the point T_- which divides OI in the ratio $OT_- : T_- I = R : -r$. This is the external center of similitude (or exsimilicenter) of the circumcircle and the incircle.
7.5 The Brocard points

Analogous to the Crelles points, we may ask if there are concurrent lines through the vertices making equal angles with the sidelines. More precisely, given triangle ABC, does there exist a point P satisfying

$$\angle BAP = \angle CBP = \angle ACP = \omega.$$

It turns out that is one such unique configuration.

Note that if P is a point satisfying $\angle BAP = \angle CBP$, then the circle through P, A, B is tangent to BC at B. This circle is unique and can be constructed as follows. Its center is the intersection of the perpendicular bisector of AB and the perpendicular to BC at B.

Likewise, if $\angle CBP = \angle ACP$, then the circle through P, B, C is tangent to CA at C. It follows that P is the intersection of these two circles. With this P, the circle PCA is tangent to AB at A.

By Ceva’s theorem, the angle ω satisfies the equation

$$\sin^3 \omega = \sin(\beta - \omega) \sin(\alpha - \omega) \sin(\gamma - \omega).$$

It also follows that with the same ω, there is another triad of circles intersecting at another point Q such that

$$\angle CAQ = \angle ABQ = \angle BCQ = \omega.$$
The points P and Q are isogonal conjugates. They are called the Brocard points of triangle ABC.
7.6 Kariya’s theorem

Given a triangle ABC with incenter I, consider a point X on the perpendicular from I to BC, such that $IX = t$. We regard $t > 0$ if X and the point of tangency of the incircle with the side BC are on the same side of I.

Theorem 7.2 (Kariya). Let I be the incenter of triangle ABC. If points X, Y, Z are chosen on the perpendiculars from I to BC, CA, AB respectively such that $IX = IY = IZ$, then the lines AX, BY, CZ are concurrent.

![Diagram of triangle ABC with incenter I and points X, Y, Z on perpendiculars]

Proof. (1) We compute the length of AX. Let the perpendicular from A to BC and the parallel from X to the same line intersect at X'. In the right triangle AXX',

\[
AX' = \frac{2\Delta}{a} - r + t = \frac{2rs}{a} - r + t = \frac{r(b + c)}{a} + t,
\]

\[
XX' = (s - b) - c \cos B
\]

\[
= \frac{1}{2}(c + a - b) - \frac{1}{2a}(c^2 + a^2 - b^2)
\]

\[
= \frac{2a}{a}(c + a - b) - (c^2 + a^2 - b^2)
\]

\[
= \frac{b^2 - c^2 - a(b - c)}{2a} = \frac{(b - c)(b + c - a)}{2a} = \frac{(b - c)(s - a)}{a}.
\]

Applying the Pythagorean theorem to the right triangle AXX', we have
(2) Let \(M' \) be the midpoint of the arc \(BAC \) of the circumcircle, and let \(MX \) intersect \(OI \) at \(P \). We shall prove that angle \(IAP = \angle IAX \).

First of all,

\[
AI^2 = \frac{(s-a)^2}{\cos^2 A} = (s-a)^2 \cdot \frac{bc}{s(s-a)} = \frac{bc(s-a)}{s} = \frac{4Rr(s-a)}{a}.
\]

For later use, we also establish

\[
AI^2 + 2Rr = \frac{4Rr(s-a)}{a} + 2Rr = \frac{2Rr(2s-2a) + 2Rr \cdot a}{a} = \frac{2Rr(b+c)}{a}.
\]

Since \(IP : PO = t : R, IP = \frac{t}{R+r} \cdot OI \). Recall that \(OI^2 = R^2 - 2Rr \). Applying the law
of cosines to triangle AIP, we have

$$AP^2 = AI^2 + IP^2 - 2 \cdot AI \cdot IP \cos AIP$$

$$= AI^2 + \left(\frac{t^2}{(R + t)^2}\right) (R^2 - 2Rr) - \frac{t}{R + t} (AI^2 + OI^2 - R^2)$$

$$= AI^2 + \left(\frac{t^2}{(R + t)^2}\right) (R^2 - 2Rr) - \frac{t}{R + t} (AI^2 - 2Rr)$$

$$= \frac{R}{R + t} \cdot AI^2 + \frac{2R^2rt}{(R + t)^2} + \frac{R^2t^2}{(R + t)^2}$$

$$= \frac{R(R + t)AI^2 + 2R^2rt + R^2t^2}{(R + t)^2}$$

$$= \frac{R^2 \cdot AI^2 + 2Rr(4R^2t + R^2t^2)}{a(R + t)^2}$$

$$= \frac{R^2(4Rr(s - a) + 2r(b + c)t + at^2)}{a(R + t)^2}.$$

Note that $AP^2 = \frac{R^2}{(R + t)^2} \cdot AX^2$. This means that $AP = \frac{R}{R + t} \cdot AX$.

(3) Let AI intersect PX at X'' and the circumcircle again at M, the antipode of M'. Note that $\frac{MM'}{MO} = -2$ and $\frac{OI}{IP} = -\frac{R + t}{t}$.

Applying Menelaus’ theorem to triangle $M'OP$ and transversal $IX''M$, we have

$$-1 = \frac{PX''}{X''M'} \cdot \frac{M'M}{MO} \cdot \frac{OI}{IP} \Rightarrow \frac{PX''}{X''M'} = -\frac{t}{2(R + t)} \Rightarrow \frac{PX''}{PM'} = -\frac{t}{2R + t}.$$

Now $\frac{XP}{PM'} = \frac{t}{R}$. Therefore, $\frac{XP}{PM'} = \frac{2R + t}{-R}$, and

$$\frac{XX''}{X''P} = \frac{R + t}{R} = \frac{AX}{AP}.$$
This shows that AX'' bisects angle XAP. Since AX'' is the bisector of angle A, the lines AP and AX are isogonal with respect to angle A.

(4) Likewise, if points Y and Z are chosen on the perpendiculars from I to CA and AB such that $IY = IZ = t = IX$, then with the same point P on OI, the lines BP and BY are isogonal with respect to angle B, and CP, CZ isogonal with respect to angle C. Therefore the three lines AX, BY, CZ intersect at the isogonal conjugate of P (which divides OI in the ratio $OP : PI = R : t$).

7.7 Isogonal conjugate of an infinite point

Proposition 7.3. Given a triangle ABC and a line ℓ, let ℓ_a, ℓ_b, ℓ_c be the parallels to ℓ through A, B, C respectively, and ℓ'_a, ℓ'_b, ℓ'_c their reflections in the angle bisectors AI, BI, CI respectively. The lines ℓ'_a, ℓ'_b, ℓ'_c intersect at a point on the circumcircle of triangle ABC.

![Diagram of isogonal conjugate](image)

Proof. Let P be the intersection of ℓ'_b and ℓ'_c.

\[
(BP, PC) = (\ell'_b, \ell'_c)
= (\ell'_b, IB) + (IB, IC) + (IC, \ell'_c)
= (IB, \ell_b) + (IB, IC) + (\ell_c, IC)
= (IB, \ell) + (IB, IC) + (\ell, IC)
= 2(IB, IC)
= 2\left(\frac{\pi}{2} + \frac{A}{2}\right)
= (BA, AC) \quad \text{(mod } \pi).\]

Therefore, ℓ'_b and ℓ'_c intersect at a point on the circumcircle of triangle ABC.

Similarly, ℓ'_a and ℓ'_b intersect at a point P' on the circumcircle. Clearly, P and P' are the same point since they are both on the reflection of ℓ_b in the bisector IB. Therefore, the three reflections ℓ'_a, ℓ'_b, and ℓ'_c intersect at the same point on the circumcircle.
Proposition 7.4. The isogonal conjugates of the infinite points of two perpendicular lines are antipodal points on the circumcircle.

Proof. If P and Q are the isogonal conjugates of the infinite points of two perpendicular lines ℓ and ℓ' through A, then AP and AQ are the reflections of ℓ and ℓ' in the bisector AI.

\[(AP, AQ) = (AP, IA) + (IA, AQ) = -(\ell, IA) - (IA, \ell') = -(\ell, \ell') = \frac{\pi}{2}.\]

Therefore, P and Q are antipodal points. \qed
Chapter 8

The excentral triangle

8.1 The Euler line of the excentral triangle

The *excentral triangle* has vertices the excenters I_a, I_b, I_c. Its sides are the external bisectors of the angles of triangle ABC, so that the internal bisectors are its altitudes, and I its orthocenter. Thus, ABC is the orthic triangle of $I_aI_bI_c$, and its circumcircle is the nine-point circle of the excentral triangle. Therefore, the line OI is the Euler line of the excentral triangle.

<table>
<thead>
<tr>
<th>Triangle center</th>
<th>Point on OI</th>
<th>Division ratio of OI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthocenter</td>
<td>I</td>
<td>$1 : 0$</td>
</tr>
<tr>
<td>Nine-point center</td>
<td>O</td>
<td>$0 : 1$</td>
</tr>
<tr>
<td>Circumcenter</td>
<td>Reflection of I in O</td>
<td>$-1 : 2$</td>
</tr>
<tr>
<td>Centroid</td>
<td></td>
<td>$-1 : 4$</td>
</tr>
</tbody>
</table>

Exercise

1. The point E_t of the excentral triangle divides OI in the ratio $-1 + 2t : 2(1 - t)$.
8.2 The circumcircle of the excentral triangle

We also have the following interesting facts.

(i) The midpoints of the segments $II_a, II_b,$ and II_c are on the circumcircle of ABC.
(ii) The midpoints of $I_bI_c, I_cI_a,$ and I_aI_b are also on the circumcircle of ABC.
(iii) In particular, the midpoints $M \text{ of } II_a$ and $M' \text{ of } I_bI_c$ are antipodal on the circumcircle, and MM' is the perpendicular bisector of BC.

More surprising are the following facts about the circumcircle of the excentral triangle.

(iv) The circumradius of the excentral circle is $2R$.
(v) Since the excentral triangle has nine-point center O and orthocenter I, its circumcenter is the reflection of I in O, i.e., $I' := 2O - I$.

Note that the line $I'I_a$ is perpendicular to BC. It therefore contains the point of tangency with the A-excircle. From this, we deduce two more interesting facts.
Proposition 8.1. The perpendiculars from three excenters to the corresponding sides concur at the reflection of the incenter in the circumcenter.
Theorem 8.2. \(r_a + r_b + r_c = 4R + r. \)

Proof. Consider the diameter \(MM' \) of the circumcircle (of \(ABC \)) perpendicular to \(BC \).

(i) \(r_b + r_c = 2 \cdot DM' = 2(R + OD). \)

(ii) \(2 \cdot OD = r + I'A_a = r + 2R - r_a. \)

(iii) It follows that \(r_a + r_b + r_c = 4R + r. \) \(\square \)
Chapter 9

Homogeneous Barycentric Coordinates

9.1 Absolute and homogeneous barycentric coordinates

The notion of barycentric coordinates dates back to A. F. Möbius (–). Given a reference triangle ABC, we put at the vertices A, B, C masses u, v, w respectively, and determine the balance point. The masses at B and C can be replaced by a single mass $v + w$ at the point $X = \frac{vB+wC}{v+w}$. Together with the mass at A, this can be replaced by a mass $u + v + w$ at the point P which divides AX in the ratio $AP : PX = v + w : u$. This is the point with absolute barycentric coordinate $\frac{uA+vB+wC}{u+v+w}$, provided $u + v + w \neq 0$. We also say that the balance point P has homogeneous barycentric coordinates $(u : v : w)$ with reference to ABC.

9.1.1 The centroid

The midpoints of the sides are

$$D = \frac{B + C}{2}, \quad E = \frac{C + A}{2}, \quad F = \frac{A + B}{2}.$$

The centroid G divides each median in the ratio 2 : 1. Thus,

$$G = \frac{A + 2D}{3} = \frac{A + B + C}{3}.$$

This is the absolute barycentric coordinate of G (with reference to ABC). Its homogeneous barycentric coordinates are simply

$$G = (1 : 1 : 1).$$

1 A triple $(u : v : w)$ with $u + v + w = 0$ does not represent any finite point on the plane. We shall say that it represents an infinite point. See §?.

9.1.2 The incenter

The bisector AX divides the side BC in the ratio $BX : XC = c : b$. This gives $X = \frac{bB+cC}{b+c}$ · Note that BX has length $\frac{ca}{b+c}$. Now, in triangle ABX, the bisector BI divides AX in the ratio $AI : IX = c : \frac{ca}{b+c} = b+c : a$. It follows that

$$I = \frac{aA + (b+c)X}{a+b+c} = \frac{aA + bB + cC}{a+b+c}.$$

The homogeneous barycentric coordinates of the incenter are

$$I = (a : b : c).$$

9.1.3 The barycenter of the perimeter

Consider the barycenter (center of mass) of the perimeter of triangle ABC. The edges BC, CA, AB can be replaced respectively by masses a, b, c at their midpoint $D = \frac{B+C}{2}$, $E = \frac{C+A}{2}$, and $F = \frac{A+B}{2}$. With reference to the medial triangle DEF, this has coordinates $a : b : c$. Since the sidelengths of triangle DEF are in the same proportions, this barycenter is the incenter of the medial triangle, also called the Spieker center S_p of ABC.
The center of mass of the perimeter is therefore the point
\[S_p = \frac{a \cdot D + b \cdot E + c \cdot F}{a + b + c} \]
\[= \frac{a \cdot \frac{B+C}{2} + b \cdot \frac{C+A}{2} + c \cdot \frac{A+B}{2}}{a + b + c} \]
\[= \frac{(b + c)A + (c + a)B + (a + b)C}{2(a + b + c)}. \]

In homogeneous barycentric coordinates,
\[S_p = (b + c : c + a : a + b). \]

9.1.4 The Gergonne point

We follow the same method to compute the coordinates of the Gergonne point \(G_e \). Here, \(BX = s - b \) and \(XC = s - c \), so that
\[X = \frac{(s - b)b + (s - c)C}{a}. \]

The ratio \(AG_e : G_e X \), however, is not immediate obvious. It can nevertheless be found by applying the Menelaus theorem to triangle \(ABX \) with transversal \(CZ \). Thus,
\[\frac{AG_e}{G_e X} \cdot \frac{XC}{CB} \cdot \frac{BZ}{ZA} = -1. \]

From this,
\[\frac{AG_e}{G_e X} = -\frac{CB}{XC} \cdot \frac{ZA}{BZ} = -\frac{-a}{s - c} \cdot \frac{s - a}{s - b} = \frac{a(s - a)}{(s - b)(s - c)}. \]

Therefore,
\[G_e = \frac{(s - b)(s - c)A + a(s - a)X}{(s - b)(s - c) + a(s - a)} \]
\[= \frac{(s - b)(s - c)A + (s - a)(s - c)B + (s - a)(s - b)C}{(s - b)(s - c) + a(s - a)}. \]
The homogeneous barycentric coordinates of the Gergonne point are

\[
G_e = \left(s - b \right) \left(s - c \right) : \left(s - c \right) \left(s - a \right) : \left(s - a \right) \left(s - b \right) \\
= \frac{1}{s - a} : \frac{1}{s - b} : \frac{1}{s - c}.
\]

9.2 Cevian triangle

It is clear that the calculations in the preceding section applies in the general case. We summarize the results in the following useful alternative of the Ceva theorem.

Theorem 9.1 (Ceva). Let \(X, Y, Z \) be points on the lines \(BC, CA, AB \) respectively. The lines \(AX, BY, CZ \) are collinear if and only if the given points have coordinates of the form

\[
X = (0 : y : z), \\
Y = (x : 0 : z), \\
Z = (x : y : 0),
\]

for some \(x, y, z \). If this condition is satisfied, the common point of the lines \(AX, BY, CZ \) is \(P = (x : y : z) \).

Remarks. (1) The points \(X, Y, Z \) are called the traces of \(P \). We also say that \(XYZ \) is the cevian triangle of \(P \) (with reference to triangle \(ABC \)). Sometimes, we shall adopt the more functional notation for the cevian triangle and its vertices:

\[
\text{cev}(P) : \quad \begin{align*}
A_P &= (0 : y : z), \\
B_P &= (x : 0 : z), \\
C_P &= (x : y : 0).
\end{align*}
\]

(2) The point \(P \) divides the segment \(AX \) in the ratio \(PX : AX = x : x + y + z \).

(3) It follows that the areas of the oriented triangles \(PBC \) and \(ABC \) are in the ratio \(\Delta(PBC) : \Delta(ABC) = x : x + y + z \). This leads to the following interpretation of homogeneous barycentric coordinates: the homogeneous barycentric coordinates of a point \(P \) can be taken as the proportions of (signed) areas of oriented triangles:

\[
P = \Delta(PBC) : \Delta(PCA) : \Delta(PAB).
\]
9.2 Cevian triangle

9.2.1 The Nagel point and the extouch triangle

The A-excircle touches the side BC at a point X' such that $BX' = s - c$ and $X'C = s - b$. From this, the homogeneous barycentric coordinates of X' are $0 : s - b : s - c$; similarly for the points of tangency Y' and Z of the B- and C-excircles:

$$X' = (0 : s - b : s - c),$$
$$Y' = (s - a : 0 : s - c),$$
$$Z' = (s - a : s - b : 0),$$

From these we conclude that AX', BY', and CZ' concur. Their common point is called the Nagel point and has coordinates

$$N_a = (s - a : s - b : s - c).$$

The triangle $X'Y'Z'$ is called the extouch triangle.

9.2.2 The orthocenter and the orthic triangle

For the orthocenter H with traces X, Y, Z on BC, CA, AB respectively, we have $BX = c \cos B$, $XC = b \cos C$. This gives

$$BX : XC = c \cos B : b \cos C = \frac{\cos B}{b} : \frac{\cos C}{c};$$

similarly for the other two traces.
The triangle XYZ is called the orthic triangle.

Exercise

1. In triangle ABC, Z is on AB such that $AZ : ZB = 1 : 2$ and Y is on AC such that $AY : YC = 4 : 3$. Let P be the intersection of BY and CZ, and let X be the intersection of BC and ray AP. Find the coordinates of P and the ratio $AP : PX$.

2. Find the area of the anticevian triangle of $(u : v : w)$.

3. The anticevian triangles of O and K have equal areas.
4. The areas of the orthic triangle, the reference triangle, and the anticevian triangle of O are in geometric progression.

5. Find the coordinates of $P = (u : v : w)$ in its anticevian triangle. \(^2\)

6. If P does not lie on the sidelines of triangle ABC and is the centroid of its own anticevian triangle, show that P is the centroid of triangle ABC.

9.2.3 The inferior and superior triangles

The triangle whose vertices are the midpoints of the sides of triangle ABC is called the inferior triangle of ABC. Its vertices are the points $A' = (0 : 1 : 1)$, $B' = (1 : 0 : 1)$, $C' = (1 : 1 : 0)$.

This triangle is homothetic to ABC at the centroid G, with ratio $-\frac{1}{2}$. Equivalently, we say that it is the image of ABC under the homothety $h(G, -\frac{1}{2})$. This means that $h(G, -\frac{1}{2})$ is a one-to-one correspondence of points on the plane such that P and P' have the same homogeneous barycentric coordinates with reference to ABC and $A'B'C'$ whenever X, X' and G are collinear and

$$\frac{GP'}{GP} = -\frac{1}{2}.$$

We call P' the inferior of P. More explicitly, P' divides PG in the ratio $PP' : P'G = 3 : -1$, so that $P' = \frac{1}{2}(3G - P)$. Suppose P has homogeneous barycentric coordinates $(x : y : z)$ with reference to ABC. It is the point $P = \frac{xA + yB + zC}{x + y + z}$. \(^3\) Thus,

$$P' = \frac{1}{2}(3G - P)$$

$$= \frac{1}{2} \left(A + B + C - \frac{xA + yB + zC}{x + y + z} \right)$$

$$= \frac{1}{2} \left(\frac{(x + y + z)(A + B + C) - (xA + yB + zC)}{x + y + z} \right)$$

$$= \frac{(y + z)A + (z + x)B + (x + y)C}{2(x + y + z)}.$$

It follows that the homogenous coordinates of P' are $(y + z : z + x : x + y)$.

The superior triangle of ABC is its image under the homothety $h(G, -2)$. Its vertices are the points $A'' = (-1 : 1 : 1)$, $B'' = (1 : -1 : 1)$, $C'' = (1 : 1 : -1)$.

\(^2\)\((v + w - u : w + u - v : u + v - w)\).

\(^3\)The conversion from homogeneous barycentric coordinates to absolute barycentric coordinates is called normalization.
Chapter 10

Some applications of barycentric coordinates

10.1 Construction of mixtilinear incircles

10.1.1 The insimilicenter and the exsimilicenter of the circumcircle and incircle

The centers of similitude of two circles are the points dividing the centers in the ratio of their radii, either internally or externally. For the circumcircle and the incircle, these are

\[T_+ = \frac{1}{R + r} (r \cdot O + R \cdot I), \]
\[T_- = \frac{1}{R - r} (-r \cdot O + R \cdot I). \]

We give an interesting application of these centers of similitude.
10.1.2 Mixtilinear incircles

A mixtilinear incircle of triangle ABC is one that is tangent to two sides of the triangle and to the circumcircle internally. Denote by A' the point of tangency of the mixtilinear incircle $K(\rho)$ in angle A with the circumcircle. The center K clearly lies on the bisector of angle A, and $AK : KI = \rho : -(\rho - r)$. In terms of barycentric coordinates,

$$K = \frac{1}{r} \left(-(\rho - r)A + \rho I \right).$$

Also, since the circumcircle $O(A')$ and the mixtilinear incircle $K(A')$ touch each other at A', we have $OK : KA' = R - \rho : \rho$, where R is the circumradius. From this,

$$K = \frac{1}{R} \left(\rho O + (R - \rho)A' \right).$$

Comparing these two equations, we obtain, by rearranging terms,

$$\frac{RI - rO}{R - r} = \frac{R(\rho - r)A + r(R - \rho)A'}{\rho(R - r)}.$$

We note some interesting consequences of this formula. First of all, it gives the intersection of the lines joining AA' and OI. Note that the point on the line OI represented by the left hand side is T_-, the exsimilicenter of the circumcircle and the incircle.

This leads to a simple construction of the mixtilinear incircle. Given a triangle ABC, extend AT_- to intersect the circumcircle at A'. The intersection of AI and $A'O$ is the center K_A of the mixtilinear incircle in angle A.

The other two mixtilinear incircles can be constructed similarly.
The Gergonne and Nagel points are examples of isotomic conjugates. Two points \(P \) and \(Q \) (not on any of the side lines of the reference triangle) are said to be isotomic conjugates if their respective traces are symmetric with respect to the midpoints of the corresponding sides. Thus,

\[
BX = X'C, \quad CY = Y'A, \quad AZ = Z'B.
\]

We shall denote the \textit{isotomic conjugate} of \(P \) by \(P^\bullet \). If \(P = (x : y : z) \), then

\[
P^\bullet = \left(\frac{1}{x} : \frac{1}{y} : \frac{1}{z} \right) = (yz : zx : xy).
\]
Example 10.1. (The Gergonne and Nagel points)

\[G_e = \left(\frac{1}{s-a} : \frac{1}{s-b} : \frac{1}{s-c} \right), \quad N_a = (s - a : s - b : s - c). \]

Example 10.2. (The isotomic conjugate of the orthocenter) The isotomic conjugate of the orthocenter is the point

\[H^\bullet = (b^2 + c^2 - a^2 : c^2 + a^2 - b^2 : a^2 + b^2 - c^2). \]

Its traces are the pedals of the deLongchamps point \(L_o \), the reflection of \(H \) in \(O \).
10.4 Equal-parallelians point

Given triangle ABC, we want to construct a point P the three lines through which parallel to the sides cut out equal intercepts. Let $P = xA + yB + zC$ in absolute barycentric coordinates. The parallel to BC cuts out an intercept of length $(1 - x)a$. It follows that the three intercepts parallel to the sides are equal if and only if

$$1 - x : 1 - y : 1 - z = \frac{1}{a} : \frac{1}{b} : \frac{1}{c}.$$

The right hand side clearly gives the homogeneous barycentric coordinates of I^*, the isotomic conjugate of the incenter I. \(^1\) This is a point we can easily construct. Now, translating into *absolute* barycentric coordinates:

$$I^* = \frac{1}{2}[(1 - x)A + (1 - y)B + (1 - z)C] = \frac{1}{2}(3G - P).$$

we obtain $P = 3G - 2I^*$, and can be easily constructed as the point dividing the segment I^*G externally in the ratio $I^*P : PG = 3 : -2$. The point P is called the congruent-parallelians point of triangle ABC.

\(^1\)The isotomic conjugate of the incenter appears in ETC as the point X_{75}.
Some applications of barycentric coordinates
Chapter 11

Computation of barycentric coordinates

11.1 The Feuerbach point

Proposition 11.1. The homogeneous barycentric coordinates of the Feuerbach point are

\[(b + c - a)(b - c)^2 : (c + a - b)(c - a)^2 : (a + b - c)(a - b)^2\].

Proof. The Feuerbach point \(F_e\) is the point of (internal) tangency of the incircle and the nine-point circle. It divides \(NI\) in the ratio \(NF_e : F_e I = R^2 : r = R : 2r\). Therefore,

\[F_e = \frac{R \cdot I - 2r \cdot N}{R - 2r}\]

in absolute barycentric coordinates.

From the homogeneous barycentric coordinates of \(N\),

\[(a^2(b^2 + c^2) - (b^2 - c^2)^2, b^2(c^2 + a^2) - (c^2 - a^2)^2, c^2(a^2 + b^2) - (a^2 - b^2)^2) = 32\Delta^2 \cdot N\].

we have

\[2r \cdot N = \frac{r}{16\Delta^2} \left(a^2(b^2 + c^2) - (b^2 - c^2)^2, \ldots \right)\]

\[= \frac{R}{4sabc} \left(a^2(b^2 + c^2) - (b^2 - c^2)^2, \ldots \right),\]

\[R \cdot I = \frac{R}{2s}(a, b, c) = \frac{R}{4sabc} \cdot 2abc(a, b, c).\]
Therefore,

\[F_e \sim R \cdot I - 2r \cdot N \]
\[\sim 2abc \cdot a - (a^2(b^2 + c^2) - (b^2 - c^2)^2) \]
\[= (a^2(2bc - b^2 - c^2) + (b - c)^2(b + c)^2, \ldots, \ldots) \]
\[= ((b - c)^2 + (b - c)^2(b + c)^2, \ldots, \ldots) \]
\[= (a + b + c)(b + c - a)(b - c)^2, \ldots, \ldots) \]
\[\sim ((b + c - a)(b - c)^2, \ldots, \ldots). \]

\[\square \]

Proposition 11.2. (a) \(ON_a \) is parallel to \(NF_e \).
(b) \(ON_a = R - 2r \).
(c) \(N_aH \) is parallel to \(OI \).
(d) The reflection of \(H \) in \(I \) and the reflection of \(N_a \) in \(O \) are the same point.
(e) \(IN \) and \(OS_p \) intersect at the midpoint of \(N_aH \).
11.2 The OI line

11.2.1 The circumcenter of the excentral triangle

Let I' be the reflection of I in O. Show that I' is also the midpoint of N_aL_o.

Let N' be the midpoint of $O L_o$. The triangles $O I'N'$ and $O I N$ are congruent. $I' N'$ is parallel to $I N$ and hence $N_a O$. Furthermore, $I' N' = I N = \frac{1}{2} N_a O$. It follows that I' is the midpoint of $N_a L_o$.

\[I' = (a (a^3 + a^2 (b + c) - a (b + c)^2 - (b + c) (b - c)^2) : \cdots : \cdots). \]

11.2.2 The centers of similitude of the circumcircle and the incircle

\[T_+ = (a^2 (s - a) : b^2 (s - b) : c^2 (s - c)). \]

Proof.

\[
T_+ \sim r \cdot O + R \cdot I \\
= \frac{r}{16 \Delta} (a^2 (b^2 + c^2 - a^2), b^2 (c^2 + a^2 - b^2), c^2 (a^2 + b^2 - c^2)) + \frac{R}{2s} (a, b, c) \\
\sim (a^2 (b^2 + c^2 - a^2), b^2 (c^2 + a^2 - b^2), c^2 (a^2 + b^2 - c^2)) + 8 R R s (a, b, c) \\
= (a^2 (b^2 + c^2 - a^2), b^2 (c^2 + a^2 - b^2), c^2 (a^2 + b^2 - c^2)) + 2 a b c (a, b, c) \\
= (a^2 (b^2 + 2 b c + c^2 - a^2), \cdots, \cdots) \\
= (a^2 (a + b + c) (b + c - a), \cdots, \cdots) \\
\sim (a^2 (b + c - a), \cdots, \cdots). \]

\[\square \]

\[T_- = \left(\frac{a^2}{s-a} : \frac{b^2}{s-b} : \frac{c^2}{s-c} \right). \]

Proof.

\[
T_- \sim r \cdot O - R \cdot I \\
= \frac{r}{16 \Delta} (a^2 (b^2 + c^2 - a^2), b^2 (c^2 + a^2 - b^2), c^2 (a^2 + b^2 - c^2)) - \frac{R}{2s} (a, b, c) \\
\sim (a^2 (b^2 + c^2 - a^2), b^2 (c^2 + a^2 - b^2), c^2 (a^2 + b^2 - c^2)) - 8 R R s (a, b, c) \\
= (a^2 (b^2 + c^2 - a^2), b^2 (c^2 + a^2 - b^2), c^2 (a^2 + b^2 - c^2)) - 2 a b c (a, b, c) \\
= (a^2 (b^2 + 2 b c + c^2 - a^2), \cdots, \cdots) \\
= (a^2 (b + a - c) (b + c - a), \cdots, \cdots) \\
\sim (a^2 (c + a - b) (a + b - c), \cdots, \cdots). \]

\[\square \]
Example 11.1. (a) \(G, T_+, F_e\) are collinear.
(b) \(H, T_-, F_e\) are collinear.

Proof. (a) This follows from

\[
\begin{align*}
(a^2(b + c - a), b^2(c + a - b), c^2(a + b - c)) \\
- ((b + c - a)(b - c)^2, (c + a - b)(c - a)^2, (a + b - c)(a - b)^2) \\
= ((b + c - a)(a^2 - (b - c)^2), (c + a - b)(b^2 - (c - a)^2), (a + b - c)(c^2 - (a - b)^2)) \\
= ((b + c - a)(a - b + c)(a + b - c), (c + a - b)(b - c + a)(b + c - a), \\
(a + b - c)(c - a + b)(c + a - b)) \\
= (b + c - a)(c + a - b)(a + b - c)(1, 1, 1).
\end{align*}
\]

\[\square\]

11.2.3 The homothetic center \(T\) of excentral and intouch triangles

The two triangles are homothetic since their corresponding sides are perpendicular to the angle bisectors of triangle \(ABC\). Denote by \(T\) the homothetic center. This is clearly the exsimilicenter of their circumcircles. It is therefore the point dividing \(I'\) and \(I\) in the ratio \(I'T : IT = 2R : r\). It follows that \(OT : TI = 2R + r : -2r\).

\[
\begin{array}{c}
T' \\
O \\
T
\end{array}
\]

\[
T = \left(\frac{a}{s-a} : \frac{b}{s-b} : \frac{c}{s-c} \right).
\]

Proof.

\[
T \sim -2r \cdot O + (2R + r)I \\
= \frac{-2r}{16r^2s^2} (a^2(b^2 + c^2 - a^2), \ldots, \ldots) + \frac{2R + r}{2s}(a, b, c) \\
\sim -(a^2(b^2 + c^2 - a^2), \ldots, \ldots) + (2R + r)(4rs)(a, b, c) \\
= -(a^2(b^2 + c^2 - a^2), \ldots, \ldots) + (2abc + 4(s - a)(s - b)(s - c))(a, b, c) \\
= (a(-a(b^2 + c^2 - a^2) + (2abc + 4(s - a)(s - b)(s - c))), \ldots, \ldots) \\
= \left(\frac{1}{2}a(a + b + c)(c + a - b)(a + b - c), \ldots, \ldots \right) \\
\sim \left(\frac{a}{b + c - a}, \ldots, \ldots \right).
\]

\[\square\]
11.3 The excentral triangle

Exercise

1. Show that $TI : IO = 2r : 2R - r$.

2. Find the ratio of division $T_4T : TT_1$.

3. Show that $G, G_e, \text{and } T$ are collinear by finding p, q satisfying

$$
p(1, 1, 1) + q((c + a - b)(a + b - c), (a + b - c)(b + c - a), (b + c - a)(c + a - b)) = 2(a + c - b)(a + b - c), b(a + b - c)(b + c - a), c(b + c - a)(c + a - b)).
$$

Answer: $p = -(b + c - a)(c + a - b)(a + b - c)$ and $q = a + b + c$.

4. Given that $GG_e : G_eT = 2(2R - r) : 3r$, show that G_e, I, L_o are collinear.

Apply the converse of Menelaus’ theorem to triangle OGT with G_e on GT, I on TO, and L_o on OG.

$$\frac{GG_e}{G_eT} \cdot \frac{TI}{IO} \cdot \frac{OL_o}{L_oG} = \frac{2(2R - r)}{3r} \cdot \frac{2r}{2R - r} \cdot \frac{-3}{4} = -1.$$

11.3 The excentral triangle

11.3.1 The centroid

The centroid of the excentral triangle is the point

$$\frac{I_a + I_b + I_c}{3} = \frac{1}{3} \left(\frac{(-a, b, c)}{b + c - a} + \frac{(a, -b, c)}{c + a - b} + \frac{(a, b, -c)}{a + b - c} \right)$$

$$\sim (c + a - b)(a + b - c)(-a, b, c) + (a + b - c)(b + c - a)(a, -b, c)$$

$$+ (b + c - a)(c + a - b)(a, b, -c)$$

$$\sim \frac{(a(-s - b)(s - c) + (s - c)(s - a) + (s - a)(s - b))}{(a^2 - 2as - bc + ca + ab), \ldots, \ldots}$$

$$\sim \frac{(a(s^2 - a^2 - bc), \ldots, \ldots)}{(a(-3a^2 + 2a(b + c) + (b - c)^2), \ldots, \ldots)}.$$

11.3.2 The incenter

$$\sim \frac{\cos A}{2} \cdot \frac{(-a, b, c)}{b + c - a} + \frac{\cos B}{2} \cdot \frac{(a, -b, c)}{c + a - b} + \frac{\cos C}{2} \cdot \frac{(a, b, -c)}{a + b - c}$$

$$\sim \frac{\cos A}{2r \cot} \frac{1}{2} (-a, b, c) + \frac{\cos B}{2r \cot} \frac{1}{2} (a, -b, c) + \frac{\cos C}{2r \cot} \frac{1}{2} (a, b, -c)$$

$$\sim \sin A \frac{1}{2} (-a, b, c) + \sin B \frac{1}{2} (a, -b, c) + \sin C \frac{1}{2} (a, b, -c)$$

$$\sim \left(a \left(-\sin A \frac{1}{2} + \frac{B}{2} \sin \frac{B}{2} + \sin \frac{C}{2} \right), \ldots, \ldots \right).$$
Chapter 12

Some interesting circles

12.1 A fundamental principle on 6 concyclic points

12.1.1 The radical axis of two circles

Given two nonconcentric circles C_1 and C_2. The locus of points of equal powers with respect to the circle is a straight line perpendicular to the line joining their centers. In fact, if the circles are concentric, there is no finite point with equal powers with respect to the circles. On the other hand, if the centers are distinct points A and B at a distance d apart, there is a unique point P with distances $AP = x$ and $PB = d - x$ such that

$$r_1^2 - x^2 = r_2^2 - (d - x)^2.$$

If this common value is m, then every point Q on the perpendicular to AB at P has power $m - PQ^2$ with respect to each of the circles. This line is called the radical axis of the two circles.

If the two circles intersect at two distinct points, then the radical axis is the line joining these common points. If the circles are tangent to each other, then the radical axis is the common tangent.

Theorem 12.1. Given three circles with distinct centers, the radical axes of the three pairs of circles are either concurrent or are parallel.

Proof. (1) If any two of the circles are concentric, there is no finite point with equal powers with respect to the three circles.

(2) If the centers of the circles are distinct and noncollinear, then two of the radical axes, being perpendiculars to two distinct lines with a common point, intersect at a point. This intersection has equal powers with respect to all three circles, and also lies on the third radical axis.

(3) If the three centers are distinct but collinear, then the three radical axes three parallel lines, which coincide if any two of them do. This is the case if and only if the three circles two points in common, or at mutually tangent at a point. In this case we say that the circles are coaxial.
12.1.2 Test for 6 concyclic points

Proposition 12.2. Let X, X' be points on the sideline a, Y, Y' on b, and Z, Z' on c. The six points are on a circle if and only if the four points on each pair of sidelines are concyclic.

![Diagram of the proposition](image)

Proof. It is enough to prove the sufficiency part. Let \mathcal{C}_a be the circle through the four points Y, Y', Z, Z' on b and c, and \mathcal{C}_b the one through Z, Z', X, X' (on c and a), and \mathcal{C}_c through X, X', Y, Y' (on a and b). We claim that these three circles are identical. If not, then they are pairwise distinct. The three pairs among them have radical axes a (for \mathcal{C}_b and \mathcal{C}_c), b (for \mathcal{C}_c and \mathcal{C}_a), and c (for \mathcal{C}_a and \mathcal{C}_b) respectively. Now, the three radical axes of three distinct circles either intersect at a common point (the radical center), or are parallel (when their centers are on a line), or coincide (when, in addition, the three circles are coaxial). In no case can the three radical axes form a triangle (with sidelines a, b, c). This shows that the three circles coincide. \qed
12.2 The Taylor circle

Consider the orthic triangle \(XYZ \), and the pedals of each of the points \(X, Y, Z \) on the two sides not containing it. Thus,

<table>
<thead>
<tr>
<th>Sideline (a)</th>
<th>Pedals of (X)</th>
<th>Pedals of (Y)</th>
<th>Pedals of (Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(X_b)</td>
<td>(X_c)</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>(Y_a)</td>
<td>(Y_c)</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>(Z_a)</td>
<td>(Z_b)</td>
<td></td>
</tr>
</tbody>
</table>

It is easy to write down the lengths of various segments. From these we easily determine the coordinates of these pedals. For example, from \(Y_aC = b \cos^2 \gamma \), we have \(AY_a = b - b \cos^2 \gamma = b \sin^2 \gamma \). Note that

\[
AY_a \cdot AY_c = (b - b \cos^2 \gamma)(b \cos^2 \alpha) = b^2 \cos^2 \alpha \sin^2 \gamma = 4R^2 \cos^2 \alpha \sin^2 \beta \sin^2 \gamma,
\]
\[
AZ_a \cdot AZ_b = (c - c \cos^2 \beta)(c \cos^2 \alpha) = c^2 \cos^2 \alpha \sin^2 \beta = 4R^2 \cos^2 \alpha \sin^2 \beta \sin^2 \gamma,
\]
giving \(AY_a \cdot AY_c = AZ_a \cdot AZ_b = \frac{S_{\alpha \beta}}{4R^2} = \frac{S_{\alpha \beta}}{a^2 b^2 c^2} \). Similarly, \(BX_b \cdot BX_c = BZ_b \cdot BZ_a = \frac{S_{\alpha \beta}}{a^2 b^2 c^2} \) and \(CY_c \cdot CY_a = CX_c \cdot CX_b = \frac{S_{\alpha \gamma}}{a^2 b^2 c^2} \). By Proposition 12.2, the six points \(X_b, X_c, Y_c, Y_a, Z_a, Z_b \) are concyclic. The circle containing them is called the Taylor circle.

Exercise

1. Calculate the length of \(X_bX_c \).
2. Find the equation of the line \(X_bX_c \). ¹
3. The three lines \(X_bX_c, Y_cY_a, Z_aZ_b \) bound a triangle with perspector \(K \).

¹ \(-S^2 x + S_{BB} y + S_{CC} z = 0 \).
12.3 Two Lemoine circles

12.3.1 The first Lemoine circle

Given triangle ABC, how can one choose a point K so that when parallel lines are constructed through it to intersect each sideline at two points, the resulting six points are on a circle?

![Diagram of triangle ABC with points K, L, Y, Z, and segments XcYc, XbZb, and BXc, CYc.](image)

Analysis. By the intersecting chords theorem, $AY_a \cdot AY_c = AZ_a \cdot AZ_b$. We have

$$b^2 \cdot \frac{AY_a}{AC} \cdot \frac{AY_c}{AC} = c^2 \cdot \frac{AZ_a}{AB} \cdot \frac{AZ_b}{AB}$$

$$\Rightarrow b^2 \cdot \frac{AY_c}{AC} = c^2 \cdot \frac{AZ_b}{AB}$$

$$\Rightarrow b^2 \cdot \frac{BX_c}{BC} = c^2 \cdot \frac{CX_b}{CB} = c^2 \cdot \frac{X_bC}{BC}$$

$$\Rightarrow \frac{BX_c}{X_bC} = \frac{c^2}{b^2}$$

Similarly, $\frac{BZ_a}{Z_aA} = \frac{a^2}{b^2}$, and

$$\frac{X_cX_b}{KY_a} = \frac{X_bX_c}{KY_a} = \frac{X_cK}{KY_c} = \frac{BZ_a}{Z_bA} = \frac{a^2}{b^2}$$

Therefore, $BX_c : X_cX_b : X_bC = c^2 : a^2 : b^2$.

These proportions determine the points X_b and X_c on BC, and subsequently the other points: the parallels X_cY_c and X_bZ_b (to c and b respectively) intersect at K, and the parallel through K to a determines the points Y_a and Z_a. The point K is called the Lemoine symmedian point of triangle ABC, and the circle containing these six points is called the first Lemoine circle.

Denote by L the center of the first Lemoine circle. Note that L lies on the perpendicular bisector of each of the parallel segments X_cX_b and Z_aY_a. This means that the line joining the midpoints of these segments is the common perpendicular bisector of the segments, and the trapezoid $X_cX_bY_aZ_a$ is symmetric; so are $Y_aY_cZ_bX_b$ and $Z_bZ_aX_cY_c$ by the same reasoning. It follows that the segments Y_cZ_b, Z_aX_c, and X_bY_a have equal lengths. (Exercise: Show that this common length is $\frac{ab_c}{a^2+b^2+c^2}$.)
12.3.2 The second Lemoine circle

Now, if we construct the parallels of these segments through K to intersect the sidelines, we obtain another three equal segments with common midpoint K. The 6 endpoints, X'_b, X'_c on a, Y'_b, Y'_c on b, and Z'_a, Z'_c on c, are on a circle center K and radius $\frac{abc}{a^2+b^2+c^2}$. This circle is called the second Lemoine circle of triangle ABC.

\[\text{12.3.3 Construction of } K \]

The length of AK is twice the median of triangle AY_cZ_b on the side Y_cZ_b. If we denote by m_a etc the lengths of medians of triangle ABC, then $AK = \frac{2bcm_a}{a^2+b^2+c^2}$. Similarly, $BK = \frac{2acm_b}{a^2+b^2+c^2}$ and $CK = \frac{2abm_c}{a^2+b^2+c^2}$. This allows us to determine the angles KAB etc and the radii of the circles KAB etc. The radius of the circle KAB, for example, is $R_c = \frac{AB \cdot AK \cdot BK}{4\Delta(KAB)} = \frac{abcm_a m_b}{(a^2+b^2+c^2)\Delta(ABC)}$. It follows that $\sin KAB = \frac{BK}{2R_c} = \frac{\Delta}{bm_a}$.

Consider also the circle GAC. This has radius $R'_a = \frac{AC \cdot AG \cdot GC}{4\Delta(GAC)} = \frac{bma m_a}{3\Delta}$. From this, $\sin GAC = \frac{CG}{2R'_a} = \frac{\Delta}{bm_a}$. This shows that $\angle KAB = \angle GAC$, and AK and the median AG are isogonal lines with respect to the sides AB and AC. Similarly, BK and CK are the lines isogonal to the medians BG and CG respectively, and K is the symmedian point of triangle ABC.
12.3.4 The center of the first Lemoine circle

We show that the center L of the first Lemoine circle is the midpoint between K and the circumcenter O. It is clear that this center is on the perpendicular bisector of X_bX_c. Let M be the midpoint of X_bX_c, and X the orthogonal projection of K on BC.

We have

$$BM = \frac{ac^2}{a^2 + b^2 + c^2} + \frac{1}{2} \cdot \frac{a^3}{a^2 + b^2 + c^2} = \frac{a(a^2 + 2c^2)}{2(a^2 + b^2 + c^2)},$$

and

$$BX = BX_c + KX_c \cos B = \frac{ac^2}{a^2 + b^2 + c^2} + \frac{a^2c}{a^2 + b^2 + c^2} \cdot \frac{c^2 + a^2 - b^2}{2ca}$$

$$= \frac{ac^2 + a(c^2 + a^2 - b^2)}{2(a^2 + b^2 + c^2)} = \frac{a(a^2 - b^2 + 3c^2)}{2(a^2 + b^2 + c^2)}.$$

It follows that

$$BX + BD = \frac{a(a^2 - b^2 + 3c^2)}{2(a^2 + b^2 + c^2)} + \frac{a(a^2 + b^2 + c^2)}{2(a^2 + b^2 + c^2)} = \frac{a(a^2 + 2c^2)}{a^2 + b^2 + c^2} = 2 \cdot BM.$$

This means that M is the midpoint of XD, and the perpendicular to a at M contains the midpoint of OK. The same reasoning shows that the midpoint of OK also lies on the perpendiculars to b and c respectively at the midpoints of Y_cY_a and Z_aZ_b. It is therefore the center L of the first Lemoine circle. (Exercise. Calculate the radius of the first Lemoine circle).
Chapter 13

Straight line equations

13.1 Area and barycentric coordinates

Theorem 13.1. If for \(i = 1, 2, 3 \), \(P_i = x_i \cdot A + y_i \cdot B + z_i \cdot C \) (in absolute barycentric coordinates), then the area of the oriented triangle \(P_1P_2P_3 \) is

\[
\Delta P_1P_2P_3 = \begin{vmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_3 & y_3 & z_3 \\
\end{vmatrix} \cdot \Delta ABC.
\]

Example 13.1. (Area of cevian triangle) Let \(P = (u : v : w) \) be a point with cevian triangle \(XYZ \). The area of the cevian triangle \(XYZ \) is

\[
\frac{1}{(v+w)(w+u)(u+v)} \begin{vmatrix}
 0 & v & w \\
 u & 0 & w \\
 u & v & 0 \\
\end{vmatrix} \cdot \Delta = \frac{2uvw}{(v+w)(w+u)(u+v)} \cdot \Delta.
\]

If \(P \) is an interior point (so that \(u, v, w \) are positive), then \(v + w \geq 2\sqrt{vw} \), \(w + u \geq 2\sqrt{wu} \), and \(u + v \geq 2\sqrt{uv} \). It follows that

\[
\frac{2uvw}{(v+w)(w+u)(u+v)} \leq \frac{2uvw}{2\sqrt{vw} \cdot 2\sqrt{wu} \cdot 2\sqrt{uv}} = \frac{1}{4}.
\]

Equality holds if and only if \(u = v = w \), i.e., \(P = (1 : 1 : 1) = G \), the centroid. The centroid is the interior point with largest cevian triangle.
13.2 Equations of straight lines

13.2.1 Two-point form

The area formula has an easy and extremely important consequence: three points \(P_i = (u_i, v_i, w_i) \) are collinear if and only if

\[
\begin{vmatrix}
 u_1 & v_1 & w_1 \\
 u_2 & v_2 & w_2 \\
 u_3 & v_3 & w_3
\end{vmatrix} = 0.
\]

Consequently, the equation of the line joining two points with coordinates \((x_1 : y_1 : z_1)\) and \((x_2 : y_2 : z_2)\) is

\[
\begin{vmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x & y & z
\end{vmatrix} = 0,
\]

or

\[
(y_1 z_2 - y_2 z_1)x + (z_1 x_2 - z_2 x_1)y + (x_1 y_2 - x_2 y_1)z = 0.
\]

Examples

1. The equations of the sidelines \(BC, CA, AB \) are respectively \(x = 0, y = 0, z = 0 \).

2. Given a point \(P = (u : v : w) \), the cevian line \(AP \) has equation \(wy - vz = 0 \); similarly for the other two cevian lines \(BP \) and \(CP \). These lines intersect corresponding sidelines at the traces of \(P \):

\[
A_P = (0 : v : w), \quad B_P = (u : 0 : w), \quad C_P = (u : v : 0).
\]

3. The equation of the line joining the centroid and the incenter is

\[
\begin{vmatrix}
 1 & 1 & 1 \\
 a & b & c \\
 x & y & z
\end{vmatrix} = 0,
\]

or \((b - c)x + (c - a)y + (a - b)z = 0\).

4. The equations of some important lines:

<table>
<thead>
<tr>
<th>Line Type</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euler line</td>
<td>(OH = \sum_{cyclic} (b^2 - c^2)(b^2 + c^2 - a^2)x = 0)</td>
</tr>
<tr>
<td>OI-line</td>
<td>(OI = \sum_{cyclic} bc(b - c)(b + c - a)x = 0)</td>
</tr>
<tr>
<td>Soddy line</td>
<td>(IG_e = \sum_{cyclic} (b - c)(s - a)^2x = 0)</td>
</tr>
<tr>
<td>Brocard axis</td>
<td>(OK = \sum_{cyclic} b^2c^2(b^2 - c^2)x = 0)</td>
</tr>
<tr>
<td>van Aubel line</td>
<td>(HK = \sum_{cyclic} S_{\alpha\alpha}(S_{\beta} - S_{\gamma})x = 0)</td>
</tr>
</tbody>
</table>
13.2 Equations of straight lines

13.2.2 Intersection of two lines

The intersection of the two lines

\[p_1x + q_1y + r_1z = 0, \]
\[p_2x + q_2y + r_2z = 0 \]

is the point

\[(q_1r_2 - q_2r_1 : r_1p_2 - r_2p_1 : p_1q_2 - p_2q_1). \]

Proposition 13.2. Three lines \(p_i x + q_i y + r_i z = 0, \ i = 1, 2, 3, \) are concurrent if and only if

\[
\begin{vmatrix}
 p_1 & q_1 & r_1 \\
 p_2 & q_2 & r_2 \\
 p_3 & q_3 & r_3 \\
\end{vmatrix} = 0.
\]

Examples

1. The intersection of the Euler line and the Soddy line is the point

\[
\begin{vmatrix}
 c-a & (s-b)^2 & (s-c)^2 \\
 (c^2-a^2)(c^2+a^2-b^2) & (a-b)(s-c)^2 \\
 (a^2-b^2)(a^2+b^2-c^2) & : & : & : \\
\end{vmatrix} = (c-a)(a-b)
\begin{vmatrix}
 s-b & s-c \\
 (c+a)(c^2+a^2-b^2) & (a+b)(a^2+b^2-c^2) \\
\end{vmatrix} = (c-a)(a-b)
\begin{vmatrix}
 s-b & a-b \\
 (c+a)(c^2+a^2-b^2) & (a+b+c) \\
\end{vmatrix} = (b-c)(c-a)(a-b)
\begin{vmatrix}
 s-b & 4a \\
 (c+a)(c^2+a^2-b^2) & (a+b+c) \\
\end{vmatrix} = \frac{1}{4}(b-c)(c-a)(a-b)(-3a^4 + 2a^2(b^2+c^2) + (b^2-c^2)^2) : : : :
\]

Writing \(a^2 = S_\beta + S_\gamma \) etc. we have

\[
-3a^4 + 2a^2(b^2+c^2) + (b^2-c^2)^2 = -3(S_\beta + S_\gamma)^2 + 2(S_\beta + S_\gamma)(2S_\alpha + S_\beta + S_\gamma) + (S_\beta - S_\gamma)^2 = 4(S_\alpha + S_\gamma - S_\beta).
\]

This intersection has homogeneous barycentric coordinates

\[-S_\beta + S_\gamma + S_\alpha : S_\beta - S_\gamma + S_\alpha : S_\beta + S_\gamma - S_\alpha.\]

This is the reflection of \(H \) in \(O \), and is called the deLongchamps point \(L_o \).
13.3 Perspective triangles

Many interesting points and lines in triangle geometry arise from the *perspectivity* of triangles. We say that two triangles $X_1Y_1Z_1$ and $X_2Y_2Z_2$ are perspective, $X_1Y_1Z_1 \cap X_2Y_2Z_2$, if the lines X_1X_2, Y_1Y_2, Z_1Z_2 are concurrent. The point of concurrency, $\wedge(X_1Y_1Z_1, X_2Y_2Z_2)$, is called the *perspector*. Along with the perspector, there is an *axis of perspectivity*, or the *perspectrix*, which is the line joining

$$Y_1Z_2 \cap Z_1Y_2, \quad Z_1X_2 \cap X_1Z_2, \quad X_1Y_2 \cap Y_1X_2.$$

We denote this line by $L_{\wedge}(X_1Y_1Z_1, X_2Y_2Z_2)$.

Homothetic triangles are clearly prespective. If triangles T and T', their perspector is the homothetic center, which we shall denote by $\wedge_0(T, T')$.

Proposition 13.3. A triangle with vertices

$$X = U : v : w,$$

$$Y = u : V : w,$$

$$Z = u : v : W,$$

for some U, V, W, is perspective to ABC at $\wedge(XYZ) = (u : v : w)$. The perspectrix is the line

$$\frac{x}{u - U} + \frac{y}{v - V} + \frac{z}{w - W} = 0.$$

Proof. The line AX has equation $wy - vz = 0$. It intersects the sideline BC at the point $(0 : v : w)$. Similarly, BY intersects CA at $(u : 0 : w)$ and CZ intersects AB at $(u : v : 0)$. These three are the traces of the point $(u : v : w)$.

The line YZ has equation $-(vW - VW)x + u(w - W)y + u(v - V)z = 0$. It intersects the sideline BC at $(0 : v - V : -(w - W))$. Similarly, the lines ZX and XY intersect CA and AB respectively at $-(u - U) : 0 : w - W)$ and $(u - U : -(v - V) : 0)$. It is easy to see that these three points are collinear on the line

$$\frac{x}{u - U} + \frac{y}{v - V} + \frac{z}{w - W} = 0.$$

\square
The excentral triangle

The excentral triangle is perspective with ABC; the perspector is the incenter I:

\[
\begin{align*}
I_a &= -a : b : c \\
I_b &= a : -b : c \\
I_c &= a : b : -c \\
I &= a : b : c
\end{align*}
\]

13.3.1 The Conway configuration

Given triangle ABC, extend

(i) CA and BA to Y_a and Z_a such that $AY_a = AZ_a = a$,
(ii) AB and CB to Z_b and X_b such that $BZ_b = BX_b = b$,
(iii) BC and AC to X_c and Y_c such that $CX_c = CY_c = c$.

These points have coordinates

\[
\begin{align*}
Y_a &= (a + b : 0 : -a), & Z_a &= (c + a : -a : 0) \\
Z_b &= (-b : b + c : 0), & X_b &= (0 : a + b : -b) \\
X_c &= (0 : -c : c + a), & Y_c &= (-c : 0 : b + c)
\end{align*}
\]

From the coordinates of Y_c and Z_b, we determine easily the coordinates of $X = BY_c \cap CZ_b$:

\[
\begin{align*}
Y_c &= -c : 0 : b + c = -bc : 0 : b(b + c) \\
Z_b &= -b : b + c : 0 = -bc : c(b + c) : 0 \\
X &= -bc : c(b + c) : b(b + c)
\end{align*}
\]
Similarly, the coordinates of \(Y = CZ_a \cap AX_c \), and \(Z = AX_b \cap BY_a \) can be determined. The following table shows that the perspector of triangles \(ABC \) and \(XYZ \) is the point with homogeneous barycentric coordinates \(\left(\frac{1}{a} : \frac{1}{b} : \frac{1}{c} \right) \).

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
<th>(?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-bc : c(b + c) : b(b + c))</td>
<td>(c(c + a) : -ca : a(c + a))</td>
<td>(b(a + b) : a(a + b) : -ab)</td>
<td>(= \frac{1}{a} : \frac{1}{b} : \frac{1}{c})</td>
</tr>
<tr>
<td>(-bc : c(b + c) : b(b + c))</td>
<td>(c(c + a) : -ca : a(c + a))</td>
<td>(b(a + b) : a(a + b) : -ab)</td>
<td>(= \frac{1}{a} : \frac{1}{b} : \frac{1}{c})</td>
</tr>
</tbody>
</table>

\(? = \frac{1}{a} : \frac{1}{b} : \frac{1}{c} \)
13.4 Perspectivity

Many interesting points and lines in triangle geometry arise from the perspectivity of triangles. We say that two triangles \(X_1Y_1Z_1\) and \(X_2Y_2Z_2\) are perspective, \(X_1Y_1Z_1 \sim X_2Y_2Z_2\), if the lines \(X_1X_2, Y_1Y_2, Z_1Z_2\) are concurrent. The point of concurrency, \(\wedge(X_1Y_1Z_1, X_2Y_2Z_2)\), is called the perspector. Along with the perspector, there is an axis of perspectivity, or the perspectrix, which is the line joining containing

\[
Y_1Z_2 \cap Z_1Y_2, \quad Z_1X_2 \cap X_1Z_2, \quad X_1Y_2 \cap Y_1X_2.
\]

We denote this line by \(L_\wedge(X_1Y_1Z_1, X_2Y_2Z_2)\). We justify this in § below.

If one of the triangles is the triangle of reference, it shall be omitted from the notation. Thus, \(\wedge(XYZ) = \wedge(ABC, XYZ)\) and \(L_\wedge(XYZ) = L_\wedge(ABC, XYZ)\).

Homothetic triangles are clearly prespective. If triangles \(T\) and \(T'\), their perspector is the homothetic center, which we shall denote by \(\wedge_0(T, T')\).

Proposition 13.4. A triangle with vertices

\[
X = U : v : w, \\
Y = u : V : w, \\
Z = u : v : W,
\]

for some \(U, V, W\), is perspective to \(ABC\) at \(\wedge(XYZ) = (u : v : w)\). The perspectrix is the line

\[
\frac{x}{u-U} + \frac{y}{v-V} + \frac{z}{w-W} = 0.
\]

Proof. The line \(AX\) has equation \(wy - vz = 0\). It intersects the sideline \(BC\) at the point \((0 : v : w)\). Similarly, \(BY\) intersects \(CA\) at \((u : 0 : w)\) and \(CZ\) intersects \(AB\) at \((u : v : 0)\). These three are the traces of the point \((u : v : w)\).

The line \(YZ\) has equation \(-(vw - VW)x + u(w - W)y + u(v - V)z = 0\). It intersects the sideline \(BC\) at \((0 : v - V : -(w - W))\). Similarly, the lines \(ZX\) and \(XY\) intersect \(CA\) and \(AB\) respectively at \((-u - U : 0 : w - W)\) and \((u - U : -(v - V) : 0)\). These three points are collinear on the trilinear polar of \((u - U : v - V : w - W)\).

The triangles \(XYZ\) and \(ABC\) are homothetic if the perspectrix is the line at infinity.
13.4.1 The Schiffler point: intersection of four Euler lines

Theorem 13.5. Let I be the incenter of triangle ABC. The Euler lines of the triangles IBC, ICA, IAB are concurrent at a point on the Euler line of ABC, namely, the Schiffler point

$$S_c = \left(\frac{a(b + c - a)}{b + c} : \frac{b(c + a - b)}{c + a} : \frac{c(a + b - c)}{a + b} \right).$$

Proof. Let I be the incenter of triangle ABC.

We first compute the equation of the Euler line of the triangle IBC.

The centroid of triangle IBC is the point $(a : a + 2b + c : a + b + 2c)$. The circumcenter of triangle is the midpoint of II_a. This is the point $(-a^2 : b(b + c) : c(b + c))$. From these we obtain the equation of the Euler line:

$$0 = \begin{vmatrix} x & y & z \\ a & a + 2b + c & a + b + 2c \\ -a^2 & b(b + c) & c(b + c) \end{vmatrix} = (b - c)(b + c)x + a(c + a)y - a(a + b)z.$$

The equations of the Euler lines of the triangles ICA and IAB can be obtained by cyclic permutations of a, b, c and x, y, z. Thus the three Euler lines are

$$(b - c)(b + c)x + a(c + a)y - a(a + b)z = 0,$$

$$-b(b + c)x + (c - a)(c + a)y + b(a + b)z = 0,$$

$$c(b + c)x - c(c + a)y + (a - b)(a + b)z = 0.$$

Computing the intersection of the latter two lines, we have the point

$$\begin{vmatrix} b - c & (c + a) & (a + b) \\ -b & b & a + b \\ c & a - b & c - a \end{vmatrix} = (c + a)(a - b) + bc : b(c + a - b) : c(b - (c - a)) = a(b + c - a) : b(c + a - b) : c(a + b - c).$$

It is easy to verify that this point also lies on the Euler line of IBC given by the first equation:

$$\begin{align*}
(b - c)a(b + c - a) + ab(c + a - b) - ac(a + b - c) \\
= a((b - c)(b + c - a) + b(c + a - b) - c(a + b - c)) \\
= a(b^2 - c^2 - ab + ca + bc + ab - b^2 - ca - bc + c^2) \\
= 0.
\end{align*}$$

It is routine to verify that this point also lies on the Euler line of ABC, with equation

$$(b^2 - c^2)(b^2 + c^2 - a^2)x + (c^2 - a^2)(c^2 + a^2 - b^2)y + (a^2 - b^2)(a^2 + b^2 - c^2)z = 0.$$

This shows that the four Euler lines are concurrent.

□
Chapter 14

Cevian nest theorem

14.1 Trilinear pole and polar

14.1.1 Trilinear polar of a point

Given a point P with traces A_P, B_P, and C_P on the sidelines of triangle ABC, let

$$X = B_P C_P \cap BC, \quad Y = C_P A_P \cap CA, \quad Z = A_P B_P \cap AB.$$

These points X, Y, Z lie on a line called the trilinear polar (or simply tripolar) of P.

![Diagram of a triangle with trilinear polar](image)
If \(P = (u : v : w) \), then \(B_P = (u : 0 : w) \) and \(C_P = (u : v : 0) \). The line \(B_P C_P \) has equation

\[-\frac{x}{u} + \frac{y}{v} + \frac{z}{w} = 0.\]

It intersects the sideline \(BC \) at the point \(X = (0 : v : -w) \).

Similarly, \(A_P = (0 : v : w) \) and the points \(Y, Z \) are

\[Y = (-u : 0 : w), \quad Z = (u : -v : 0).\]

The line containing the three points \(X, Y, Z \) is

\[\frac{x}{u} + \frac{y}{v} + \frac{z}{w} = 0.\]

This is the tripolar of \(P \).
14.1.2 Tripole of a line

Given a line \mathcal{L} intersecting BC, CA, AB at X, Y, Z respectively, let

\[
A' = BY \cap CZ, \quad B' = CZ \cap AX, \quad C' = AX \cap BY.
\]

The lines AA', BB', CC' are concurrent. The point of concurrency is the tripole P of \mathcal{L}.

Clearly P is the tripole of \mathcal{L} if and only if \mathcal{L} is the tripolar of P.
14.2 Anticevian triangles

The vertices of the anticevian triangle of a point \(P = (u : v : w) \) are the harmonic conjugates of \(P \) with respect to the cevian segments \(AA_P, BB_P \) and \(CC_P \), i.e.,

\[
AP : PA_P = -AP_a : P_a A_P;
\]

similarly for \(P_b \) and \(P_c \). This is called the anticevian triangle of \(P \) since \(ABC \) is the cevian triangle \(P_a P_b P_c \). It is also convenient to regard \(P, P_a, P_b, P_c \) as a harmonic quadruple in the sense that any three of the points constitute the harmonic associates of the remaining point.

14.2.1 Construction of anticevian triangle

If the trilinear polar \(L_P \) of \(P \) intersects the sidelines \(BC, CA, AB \) at \(X', Y', Z' \) respectively, then the anticevian triangle \(\text{cev}^{-1}(P) \) is simply the triangle bounded by the lines \(AX', BY', \) and \(CZ' \).
Another construction of anticevian triangle

Here is an alternative construction of $\text{cev}^{-1}(P)$.

Let $A_H B_H C_H$ be the orthic triangle, and X the reflection of P in a, then the intersection of the lines $A_H X$ and OA is the harmonic conjugate P_a of P in AA_P:

$$\frac{A P_a}{P_a A P} = -\frac{A P}{P A P}.$$

Proof. Let A' be the reflection of A in BC. Applying Menelaus’ theorem to triangle $A_P A A'$ with transversal $A_H X P_a$, we have

$$\frac{A P_a}{P_a A P} \cdot \frac{A P X}{X A'} \cdot \frac{A' A_H}{A_H A} = -1.$$

This gives

$$\frac{A P_a}{P_a A P} = -\frac{X A'}{A P X} = -\frac{P A}{A P A} = -\frac{A P}{P A P},$$

showing that P_a and P divide $A A_P$ harmonically. \qed
Examples of anticevian triangles

(1) The anticevian triangle of the centroid is the superior triangle, bounded by the lines through the vertices parallel to the opposite sides.

(2) The anticevian triangle of the incenter is the excentral triangle whose vertices are the excenters.

(3) The vertices of the tangential triangle being

$$A' = (-a^2 : b^2 : c^2), \quad B' = (a^2 : -b^2 : c^2), \quad C' = (a^2 : b^2 : -c^2),$$

these clearly form the anticevian triangle of a point with coordinates $$(a^2 : b^2 : c^2)$$, which we call the symmedian point K.

(4) The anticevian triangle of the circumcenter. Here is an interesting property of $cev^{-1}(O)$. Let the perpendiculurs to AC and AB at A intersect BC at A_b and A_c respectively. We call AA_bA_c an orthial triangle of ABC. The circumcenter of AA_bA_c is the vertex O_a of $cev^{-1}(O)$; similarly for the other two orthial triangles. (See §??).
14.3 Cevian quotients

14.3.1 The cevian nest theorem

Theorem 14.1. For arbitrary points P and Q, the cevian triangle $\text{cev}(P)$ and the anticevian triangle $\text{cev}^{-1}(Q)$ are always perspective. If $P = (u : v : w)$ and $Q = (u' : v' : w')$, then

(i) the perspector is the point

$$\wedge(\text{cev}(P), \text{cev}^{-1}(Q)) = \left(u' \left(-\frac{u'}{u} + \frac{v'}{v} + \frac{w'}{w} \right) : v' \left(-\frac{v'}{v} + \frac{w'}{w} + \frac{u'}{u} \right) : w' \left(-\frac{w'}{w} + \frac{u'}{u} + \frac{v'}{v} \right) \right),$$

(ii) the perspectrix is the line $L_{\wedge}(\text{cev}(P), \text{cev}^{-1}(Q))$ with equation

$$\sum_{\text{cyclic}} \frac{1}{u} \left(-\frac{u'}{u} + \frac{v'}{v} + \frac{w'}{w} \right) x = 0.$$

Proof. (i) Let $\text{cev}(P) = XYZ$ and $\text{cev}^{-1}(Q) = X'Y'Z'$. Since $X = (0 : v : w)$ and $X' = (-u' : v' : w')$, the line XX' has equation

$$\frac{1}{u'} \left(\frac{w'}{w} - \frac{v'}{v} \right) x - \frac{1}{v} y + \frac{1}{w} z = 0.$$

The equations of YY' and ZZ' can be easily written down by cyclic permutations of $(u, v, w), (u', v', w')$ and (x, y, z). It is easy to check that the line XX' contains the point

$$\left(u' \left(-\frac{u'}{u} + \frac{v'}{v} + \frac{w'}{w} \right) : v' \left(-\frac{v'}{v} + \frac{w'}{w} + \frac{u'}{u} \right) : w' \left(-\frac{w'}{w} + \frac{u'}{u} + \frac{v'}{v} \right) \right)$$
whose coordinates are invariant under the above cyclic permutations. This point therefore also lies on the lines \(YY' \) and \(ZZ' \).

(ii) The lines \(YZ \) and \(Y'Z' \) have equations

\[
-\frac{x}{u} + \frac{y}{v} + \frac{z}{w} = 0,
\frac{x}{u'} + \frac{y}{v'} + \frac{z}{w'} = 0.
\]

They intersect at the point

\[U' = (u(wv' - uw') : vwv' : -vww').\]

Similarly, the lines pairs \(ZX, Z'X' \) and \(XY, X'Y' \) have intersections

\[V' = (-wuu' : v(ww' - uu') : wuw')\]
and

\[W' = (uvu' : -uvv' : w(vu' - uv')).\]

The three points \(U', V', W' \) lie on the line with equation given above.

Corollary 14.2. If \(T' \) is a cevian triangle of \(T \) and \(T'' \) is a cevian triangle of \(T' \), then \(T'' \) is a cevian triangle of \(T \).

Proof. With reference to \(T_2 \), the triangle \(T_1 \) is anticevian.

Remark. Suppose \(T' = \text{cev}_T(P) \) and \(T'' = \text{cev}_{T'}(Q) \). If \(P = (u : v : w) \) with respect to \(T \), and \(Q = (u' : v' : w') \) with respect to \(T' \), then,

\[\wedge(T, T'') = \left(\frac{u}{u'}(v + w) : \frac{v}{v'}(w + u) : \frac{w}{w'}(u + v)\right)\]

with respect to triangle \(T \). The equation of the perspectrix \(\mathcal{L}_{\wedge}(T, T'') \) is

\[
\sum_{\text{cyclic}} \frac{1}{u} \left(-\frac{v + w}{u'} + \frac{w + u}{v'} + \frac{u + v}{w'}\right) x = 0.
\]

These formulae, however, are quite difficult to use, since they involve complicated changes of coordinates with respect to different triangles.

We shall simply write

\[P/Q := \wedge(\text{cev}(P), \text{cev}^{-1}(Q))\]

and call it the **cevian quotient** of \(P \) by \(Q \).
The cevian quotients of the centroid G/P

If $P = (u : v : w)$,

$$G/P = (u(-u + v + w) : v(-v + w + u) : w(-w + u + v)).$$

Some common examples of G/P.

<table>
<thead>
<tr>
<th>P</th>
<th>G/P coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>M_i $(a(s - a) : b(s - b) : c(s - c))$</td>
</tr>
<tr>
<td>O</td>
<td>K $(a^2 : b^2 : c^2)$</td>
</tr>
<tr>
<td>K</td>
<td>O $(a^2S_a : b^2S_b : c^2S_c)$</td>
</tr>
</tbody>
</table>

The point $M_i = G/I$ is called the Mittenpunkt of triangle ABC.\(^1\) It is the symmedian point of the excentral triangle. The tangential triangle of the excentral triangle is homothetic to ABC at T.

(i) We compute the symmedian point of the excentral triangle. Note that

$$I_bI_c^2 = \frac{a^2bc}{(s - b)(s - c)}, \quad I_cI_a^2 = \frac{ab^2c}{(s - c)(s - a)}, \quad I_aI_b^2 = \frac{abc^2}{(s - a)(s - b)}.$$

For the homogeneous barycentric coordinates of the symmedian point of the excentral triangle $I_aI_bI_c$, we have

$$I_bI_c^2 \cdot I_a + I_cI_a^2 \cdot I_b + I_aI_b^2 \cdot I_c$$

$$= \frac{a^2bc}{(s - b)(s - c)} \cdot \frac{(-a, b, c)}{2(s - a)} + \frac{ab^2c}{(s - c)(s - a)} \cdot \frac{(a, -b, c)}{2(s - b)} + \frac{abc^2}{(s - a)(s - b)} \cdot \frac{(a, b, -c)}{2(s - c)}$$

$$= \frac{abc}{2(s - a)(s - b)(s - c)} (a(-a, b, c) + b(a, -b, c) + c(a, b, -c))$$

$$= \frac{abc}{2(s - a)(s - b)(s - c)} (a(-a + b + c), b(a - b + c), c(a + b - c)).$$

From this, we obtain the Mittenpunkt M_i.

(ii) Since the excentral triangle is homothetic to the intouch triangle at T, their tangential triangles are homothetic at the same triangle center. Using the cevian nest theorem, we have

$$T = \bigwedge_0(\text{cev}(G_e), \text{cev}^{-1}(I)) = \left(\frac{a}{s-a} : \frac{b}{s-b} : \frac{c}{s-c}\right).$$

\(^1\)This appears as X_9 in ETC.
The cevian quotients of the orthocenter H/P

For $P = (u : v : w)$,

$$H/P = (u(-S_\alpha u + S_\beta v + S_\gamma w) : v(-S_\beta v + S_\gamma w + S_\alpha u) : w(-S_\gamma w + S_\alpha u + S_\beta v)).$$

Examples

(1) $H/G = (S_\beta + S_\gamma - S_\alpha : S_\gamma + S_\alpha - S_\beta : S_\alpha + S_\beta - S_\gamma)$ is the superior of H^*.

(2) H/I is a point on the OI-line, dividing OI in the ratio $R + r : -2r$. \(^2\)

$$H/I = (a(a^3 + a^2(b + c) - a(b^2 + c^2) - (b + c)(b - c)^2) : \cdots : \cdots).$$

(3) $H/K = \left(\frac{a^2}{S_\alpha} : \frac{b^2}{S_\beta} : \frac{c^2}{S_\gamma}\right)$ is the homothetic center of the orthic and tangential triangle. \(^3\) It is a point on the Euler line.

(4) H/O is the orthocenter of the tangential triangle. \(^4\)

(5) H/N is the orthocenter of the orthic triangle. \(^5\)

The cevian quotient G_e/K

This is the perspector of the intouch triangle and the tangential triangle \(^6\)

$$G_e/K = (a^2(a^3 - a^2(b + c) + a(b^2 + c^2) - (b + c)(b - c)^2) : \cdots : \cdots).$$

\(^2\)This point appears as X_{46} in ETC.
\(^3\)This appears as X_{25} in ETC.
\(^4\)This appears as X_{155} in ETC.
\(^5\)This appears as X_{52} in ETC.
\(^6\)This appears as X_{1486} in ETC.
14.3.2 Basic properties of cevian quotients

Proposition 14.3. (1) $P/P = P$.

(2) If $P/Q = M$, then $Q = P/M$.

Proof. (2) Let $P = (u : v : w)$, $Q = (u' : v' : w')$, and $M = (x : y : z)$. We have

$$
x = rac{u'}{u} \left(-rac{u'}{u} + rac{v'}{v} + rac{w'}{w} \right),
$$

$$
y = rac{v'}{v} \left(rac{u'}{u} - rac{v'}{v} + rac{w'}{w} \right),
$$

$$
z = rac{w'}{w} \left(rac{u'}{u} + rac{v'}{v} - rac{w'}{w} \right),
$$

From these,

$$
-x + y + z = \left(\frac{u'}{u} - \frac{v'}{v} + \frac{w'}{w} \right) \left(\frac{u'}{u} + \frac{v'}{v} - \frac{w'}{w} \right),
$$

$$
x - y + z = \left(-\frac{u'}{u} + \frac{v'}{v} + \frac{w'}{w} \right) \left(\frac{u'}{u} + \frac{v'}{v} - \frac{w'}{w} \right),
$$

$$
x + y - z = \left(-\frac{u'}{u} - \frac{v'}{v} + \frac{w'}{w} \right) \left(\frac{u'}{u} - \frac{v'}{v} + \frac{w'}{w} \right),
$$

$$
x + y - z = \left(-\frac{u'}{u} - \frac{v'}{v} - \frac{w'}{w} \right) \left(\frac{u'}{u} + \frac{v'}{v} + \frac{w'}{w} \right).
and
\[
\frac{x}{u} \left(\frac{-x + y + z}{u} \right) : \frac{y}{v} \left(\frac{x - y + z}{v} \right) : \frac{z}{w} \left(\frac{x + y - z}{w} \right) = \frac{u'}{u} : \frac{v'}{v} : \frac{w'}{w}.
\]

It follows that
\[
u' : v' : w' = x \left(\frac{-x + y + z}{u} \right) : y \left(\frac{x - y + z}{v} \right) : z \left(\frac{x + y - z}{w} \right).
\]
Chapter 15

Circle equations

15.1 The power of a point with respect to a circle

The power of P with respect to a circle $Q(\rho)$ is the quantity $\mathcal{P}(P) := PQ^2 - \rho^2$. A point P is in, on, or outside the circle according as \mathcal{P} is negative, zero, or positive.

Proposition 15.1. Let $P = xA + yB + zC$ in absolute barycentric coordinates.

$$\mathcal{P}(P) = x\mathcal{P}(A) + y\mathcal{P}(B) + z\mathcal{P}(C) - (a^2yz + b^2zx + c^2xy).$$

Proof. Let X be the trace of P on BC. In absolute coordinates, $X = \frac{yB + zC}{y + z}$, so that $P = xA + (y + z)X$. Applying Stewart’s theorem in succession to triangles QAX, QBC and ABC, we have

$$PQ^2 = xAQ^2 + (y + z)XQ^2 - x(y + z)AX^2$$

$$= xAQ^2 + (y + z) \left(\frac{y}{y + z} BQ^2 + \frac{z}{y + z} CQ^2 - \frac{yz}{(y + z)^2} BC^2 \right) - x(y + z)AX^2$$

$$= xAQ^2 + yBQ^2 + zCQ^2 - \frac{yz}{y + z} BC^2 - x(y + z)AX^2$$

$$= xAQ^2 + yBQ^2 + zCQ^2 - \frac{yz}{y + z} BC^2$$

$$- x(y + z) \left(\frac{z}{y + z} AC^2 + \frac{y}{y + z} AB^2 - \frac{yz}{(y + z)^2} \cdot BC^2 \right)$$

$$= xAQ^2 + yBQ^2 + zCQ^2 - \frac{(1 - x)yz}{y + z} \cdot BC^2 - xz \cdot AC^2 - xy \cdot AB^2$$

$$= xAQ^2 + yBQ^2 + zCQ^2 - (a^2yz + b^2zx + c^2xy).$$
From this it follows that

\[\mathcal{P}(P) = PQ^2 - \rho^2 \]
\[= x(AQ^2 - \rho^2) + y(BQ^2 - \rho^2) + z(CQ^2 - \rho^2) - (a^2yz + b^2zx + c^2xy) \]
\[= x\mathcal{P}(A) + y\mathcal{P}(B) + z\mathcal{P}(C) - a^2yz - b^2zx - c^2xy. \]

\[\square \]

15.2 Circle equation

Using homogeneous barycentric coordinates for \(P \) and writing

\[f := \mathcal{P}(A), \quad g := \mathcal{P}(B), \quad h := \mathcal{P}(C), \]

for the powers of \(A, B, C \) with respect to a circle \(Q(\rho) \), we have,

\[\mathcal{P}(P) = \frac{fx + gy + hz}{x + y + z} - \frac{a^2yz + b^2zx + c^2xy}{(x + y + z)^2} \]
\[= \frac{(a^2yz + b^2zx + c^2xy) - (x + y + z)(fx + gy + hz)}{(x + y + z)^2}. \]

Therefore, the equation of the circle is

\[(a^2yz + b^2zx + c^2xy) - (x + y + z)(fx + gy + hz) = 0. \]

Example 15.1. (1) The equation of the circumcircle is \(a^2yz + b^2zx + c^2xy = 0 \) since \(f = g = h = 0 \).

(2) For the incircle, we have

\[f = (s - a)^2, \quad g = (s - b)^2, \quad h = (s - c)^2. \]

The equation of the incircle is

\[a^2yz + b^2zx + c^2xy - (x + y + z)((s - a)^2x + (s - b)^2y + (s - c)^2z) = 0. \]

(3) Similarly, the \(A \)-excircle has equation

\[a^2yz + b^2zx + c^2xy - (x + y + z)(s^2x + (s - c)^2y + (s - b)^2z) = 0. \]

(4) For the nine-point circle, we have \(f = \frac{b}{2} \cdot c \cos A = \frac{b}{2} \cdot \frac{S_a}{b} = \frac{1}{2}S_a \). Similarly, \(g = \frac{1}{2}S_\beta \) and \(h = \frac{1}{2}S_\gamma \). Therefore, the equation of the nine-point circle is

\[2(a^2yz + b^2zx + c^2xy) - (x + y + z)(S_\alpha x + S_\beta y + S_\gamma z) = 0. \]
Exercise

1. Find the equation of the Conway circle.

2. Find the equations of the circles
 (i) \mathcal{C}_{BBC} passing through B and C, and tangent to BC at B,
 (ii) \mathcal{C}_{BCC} passing through B and C, and tangent to BC at C.

3. Compute the coordinates of the Brocard points:
 (i) Ω_\to as the intersection of the circles \mathcal{C}_{BBC}, \mathcal{C}_{CCA}, and \mathcal{C}_{AAB},
 (ii) Ω_\leftarrow as the intersection of the circles \mathcal{C}_{BCC}, \mathcal{C}_{CAA}, and \mathcal{C}_{ABB}.

4. Find the equation of the circle with diameter BC.

15.3 Points on the circumcircle

The equation of the circumcircle can be written in the form

$$\frac{a^2}{x} + \frac{b^2}{y} + \frac{c^2}{z} = 0.$$

This shows that the circumcircle consists of the isogonal conjugates of infinite points.

15.3.1 $X(101)$

The point

$$X(101) = \left(\frac{a^2}{b-c} : \frac{b^2}{c-a} : \frac{c^2}{a-b} \right)$$

is clearly on the circumcircle.

15.3.2 $X(100)$

The point

$$X(100) = \left(\frac{a}{b-c} : \frac{b}{c-a} : \frac{c}{a-b} \right)$$

is clearly on the circumcircle. It is the isogonal conjugate of the infinite point

$$(a(b-c) : b(c-a) : c(a-b))$$

(on the trilinear polar of the incenter, namely, the line $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$).

Its inferior is a point on the nine-point circle. To find this, we rewrite

$$X(100) = (a(c-a)(a-b) : b(a-b)(b-c) : c(b-c)(c-a)).$$
From this,
\[
\inf(X(100)) = (b(a - b)(b - c) + c(b - c)(c - a) : \cdots : \cdots)
\]
\[
= ((b - c)(b(a - b) + c(c - a)) : \cdots : \cdots)
\]
\[
= ((b - c)^2(b + c - a) : \cdots : \cdots),
\]
the Feuerbach point!

1. The distance from \(X(100) \) to the Nagel point is the diameter of the incircle.
2. \(X(100) \) is the intersection of the Euler lines of the triangles \(I_aBC, I_bCA, I_cAB \).

15.3.3 The Steiner point \(X(99) \)

The Steiner point
\[
X(99) = \left(\frac{1}{b^2 - c^2} : \frac{1}{c^2 - a^2} : \frac{1}{a^2 - b^2} \right)
\]

The inferior of the Steiner point is
\[
X(115) = ((b^2 - c^2)^2 : (c^2 - a^2)^2 : (a^2 - b^2)^2).
\]

This is the midpoint between the Fermat points.

15.3.4 The Euler reflection point \(E = X(110) \)

Theorem 15.2. The reflections of the Euler line in the sidelines of triangle \(ABC \) are concurrent at
\[
E = \left(\frac{a^2}{b^2 - c^2} : \frac{b^2}{c^2 - a^2} : \frac{c^2}{a^2 - b^2} \right)
\]
on the circumcircle.

Proof. The Euler line
\[
S_\alpha(S_\beta - S_\gamma)x + S_\beta(S_\gamma - S_\alpha)y + S_\gamma(S_\alpha - S_\beta)z = 0
\]
intersects the sideline \(BC \) at
\[
X = (0 : S_\gamma(S_\alpha - S_\beta) : -S_\beta(S_\gamma - S_\alpha)).
\]

We find the reflection of \(H \) in \(BC \) as follows. From the relation
\[
(S_\beta + S_\gamma + S_\alpha)(0, S_\gamma, S_\beta) + S_\beta(S_\beta + S_\gamma, -S_\gamma, -S_\beta)
\]
\[
= (S_\beta + S_\gamma)(S_\beta + S_\gamma, -S_\gamma, -S_\beta),
\]
we have
\[
H = X + \frac{S_\beta + S_\gamma}{(S_\beta + S_\gamma)(S_\beta + S_\gamma, -S_\gamma, -S_\beta)}(S_\beta + S_\gamma, -S_\gamma, -S_\beta).
\]
Therefore, its reflection in BC is the point

$$X' = X - \frac{S_{\beta\gamma}}{(S_{\beta} + S_{\gamma})(S_{\beta\gamma} + S_{\gamma\alpha} + S_{\alpha\beta})} (S_{\beta} + S_{\gamma}, -S_{\gamma}, -S_{\beta}).$$

In homogeneous barycentric coordinates, this is

$$X' = (S_{\beta\gamma} + S_{\gamma\alpha} + S_{\alpha\beta})(0, S_{\gamma}, S_{\beta}) - S_{\beta\gamma}(S_{\beta} + S_{\gamma}, -S_{\gamma}, -S_{\beta})$$

$$= (-S_{\beta\gamma}(S_{\beta} + S_{\gamma}), S_{\gamma}(2S_{\beta\gamma} + S_{\gamma\alpha} + S_{\alpha\beta}), S_{\beta}(2S_{\beta\gamma} + S_{\gamma\alpha} + S_{\alpha\beta})).$$

The inferior of the Euler reflection is the point

$$X(125) = ((b^2 - c^2)(b^2 + c^2 - a^2) : (c^2 - a^2)^2(c^2 + a^2 - b^2) : (a^2 - b^2)^2(a^2 + b^2 - c^2)).$$

This is the intersection of the Euler lines of the triangles AYZ, BZX, CXZ, where XYZ is the orthic triangle.

15.4 Circumcevian triangle

Let $P = (u : v : w)$. The lines AP, BP, CP intersect the circumcircle again at X, Y, Z. The triangle XYZ is called the circumcevian triangle of P. Since X lies on the line AP, $X = (x : v : w)$ for some x. This point lies on the circumcircle if and only if

$$a^2vw + b^2xw + c^2xv = 0.$$

This gives $x = \frac{-a^2vw}{b^2w + c^2v}$. Therefore,

$$X = (-a^2vw : (b^2w + c^2)v : (b^2w + c^2)v).$$

Similarly,

$$Y = ((c^2u + a^2w)u : -b^2wu : (c^2u + a^2w)w), \quad Z = ((a^2v + b^2u)u : (a^2v + b^2u)v : -c^2uv).$$

Proposition 15.3. The circumcevian triangle of $P = (u : v : w)$ is perspective with the tangential triangle at

$$\left(a^2 \left(-\frac{a^4}{u^2} + \frac{b^4}{v^2} + \frac{c^4}{w^2} \right) : \cdots : \cdots \right).$$

Proof. The vertices of the tangential triangle are $(-a^2, b^2, c^2)$, $(a^2, -b^2, c^2)$, $(a^2, b^2, -c^2)$. The line joining $(-a^2, b^2, c^2)$ to X is

$$\begin{vmatrix}
 x & y & z \\
 -a^2 & b^2 & c^2 \\
 -a^2vw & (b^2w + c^2)v & (b^2w + c^2)v \\
\end{vmatrix} = 0.$$
This is
\[(b^4w^2 - c^4v^2)x + a^2b^2w^2y - a^2c^2v^2z = 0.\]
Similarly, the lines joining \((a^2, -b^2, c^2)\) to \(Y\) and \((a^2, b^2, -c^2)\) to \(Z\) are
\[-a^2b^2w^2x + (c^4u^2 - a^4w^2)y + b^2c^2u^2z = 0,\]
\[a^2b^2v^2x - b^2c^2u^2y + (b^4v^2 - b^4u^2)z = 0.\]
These three lines concur at a point with coordinates given above.

Example 15.2.

1. \(G: X(22) = (a^2(-a^4 + b^4 + c^4) : \cdots : \cdots).\)

2. \(H: X(24) = \left(\frac{a^2(a^4 + b^4 + c^4 - 2a^2b^2 - 2a^2c^2)}{b^4 + c^4 - a^4} : \cdots : \cdots\right).\)

These two points are on the Euler line, and are the centers of similitude of the circum-circle and incircle of the tangential triangle.

15.5 The third Lemoine circle

Given a point \(P = (u : v : w)\), it is easy to find the equation of the circle \(\mathcal{C}_a\) through \(P, B, C\). Since \(\mathcal{P}(B) = \mathcal{P}(C) = 0\), the equation of the circle is

\[\mathcal{C}_a : a^2yz + b^2zx + c^2xy - (x + y + z) \cdot fx = 0\]
for some \(f\). Since the circle passes through \(P = (u : v : w)\), we must have

\[f = \frac{a^2vw + b^2wu + c^2uv}{u(u + v + w)}.\]

This circle \(\mathcal{C}_a\) intersects the lines \(AC\) and \(AB\) each again at another point. To find the intersection with \(AC\), we put \(y = 0\) in the equation of \((\mathcal{C}_a)\) and obtain \(b^2zx - fx(x + z) = 0, x((b^2 - f)z - fx)) = 0.\) Therefore, apart from \(C = (0, 0, 1)\), the circle \(\mathcal{C}_a\) intersects \(AC\) at

\[B_a = (b^2 - f : 0 : f) = (b^2u^2 + b^2uw - a^2vw - c^2uv : 0 : a^2vw + b^2wu + c^2uv).\]

Similarly, the circle \(\mathcal{C}_a\) intersects \(AB\) again at

\[C_a = (c^2 - f : f : 0) = (c^2u^2 + c^2wu - a^2vw - b^2wu : a^2vw + b^2wu + c^2uv : 0).\]

Similarly, with

\[g = \frac{a^2vw + b^2wu + c^2uv}{v(u + v + w)} \quad \text{and} \quad h = \frac{a^2vw + b^2wu + c^2uv}{w(u + v + w)},\]

the circles \(\mathcal{C}_b\) through \(P, C, A\) and \(\mathcal{C}_c\) through \(P, A, B\) intersect the sidelines again at

\[C_b = (g : c^2-g : 0), \quad A_b = (0 : a^2-g : g), \quad A_c = (0 : h : a^2-h), \quad B_c = (h : 0 : b^2-h).\]
Note the lengths of the segments:

\[AB_a = \frac{f}{b^2} \cdot b = \frac{f}{b}, \quad AB_c = \frac{b^2 - h}{b^2} \cdot b = \frac{b^2 - h}{b}, \]

and

\[AC_a = \frac{f}{c^2} \cdot c = \frac{f}{c}, \quad AC_b = \frac{c^2 - g}{c^2} \cdot c = \frac{c^2 - g}{c}. \]

The four points \(B_a, B_c, C_a, C_b \) are concyclic if and only if

\[AB_a \cdot AB_c = AC_a \cdot AC_b \implies \frac{f(b^2 - h)}{b^2} = \frac{f(c^2 - g)}{c^2} \implies \frac{b^2}{c^2} = \frac{h}{g} = \frac{v^2}{w^2}. \]

Likewise, the four points \(C_b, C_a, A_b, A_c \) are concyclic if and only if \(\frac{c^2}{a^2} = \frac{w}{u} \), and the four points \(A_c, A_b, B_c, B_a \) are concyclic if and only if \(\frac{a^2}{b^2} = \frac{u}{v} \).

By the principle of 6 concyclic points, the six points \(A_b, A_c, B_c, B_a, C_a, C_b \) are concyclic if and only if

\[u : v : w = a^2 : b^2 : c^2, \]

namely, \(P = (u : v : w) = (a^2 : b^2 : c^2) \), the symmedian point. The circle \(C \) containing these 6 points is the third Lemoine circle.

For this choice of \(P \),

\[f = \frac{3b^2c^2}{a^2 + b^2 + c^2}, \quad g = \frac{3c^2a^2}{a^2 + b^2 + c^2}, \quad h = \frac{3a^2b^2}{a^2 + b^2 + c^2}. \]

With respect to the circle \(C \) containing these 6 points, we have

\[\mathcal{P}(A) = \frac{f(b^2 - h)}{b^2} = \frac{3b^2c^2 \cdot b^2(b^2 + c^2 - 2a^2)}{b^2(a^2 + b^2 + c^2)^2} = \frac{3b^2c^2(b^2 + c^2 - 2a^2)}{(a^2 + b^2 + c^2)^2}. \]

Similarly,

\[\mathcal{P}(B) = \frac{3c^2a^2(c^2 + a^2 - 2b^2)}{(a^2 + b^2 + c^2)^2}, \quad \mathcal{P}(C) = \frac{3a^2b^2(a^2 + b^2 - 2c^2)}{(a^2 + b^2 + c^2)^2}. \]

From these, we obtain the equation of the third Lemoine circle:

\[(a^2 + b^2 + c^2)^2(a^2yz + b^2zx + c^2xy) - 3(x + y + z)(b^2c^2(b^2 + c^2 - 2a^2)x + c^2a^2(c^2 + a^2 - 2b^2)y + a^2b^2(a^2 + b^2 - 2c^2)z) = 0. \]
Chapter 16

The Brocard triangles and the Brocard circle

16.1 The first Brocard triangle

Consider the lines joining the vertices to the two Brocard points. Pairwise, they intersect at three points which form the Kiepert triangle \(\mathcal{K}(-\omega) \).

Since \(S_\omega = S_\alpha + S_\beta + S_\gamma \),

\[
B\Omega_\leftarrow \cap C\Omega_\rightarrow = X(-\omega) = (-a^2 : S_\gamma - S_\omega : S_\beta - S_\omega)
= (-a^2 : -S_\alpha - S_\beta : -S_\alpha - S_\gamma)
= (-a^2 : -c^2 : -b^2)
= (a^2 : c^2 : b^2).
\]

Similarly,

\[
C\Omega_\leftarrow \cap A\Omega_\rightarrow = Y(-\omega) = (c^2 : b^2 : a^2),
A\Omega_\leftarrow \cap B\Omega_\rightarrow = Z(-\omega) = (b^2 : a^2 : c^2).
\]
We call this the first Brocard triangle. It is perspective with ABC at

$$K(-\omega) = \left(\frac{1}{S_\alpha - S_\omega} : \frac{1}{S_\beta - S_\omega} : \frac{1}{S_\gamma - S_\omega} \right) \sim \left(\frac{1}{a^2} : \frac{1}{b^2} : \frac{1}{c^2} \right) = K^*.$$

Proposition 16.1. The homogeneous barycentric coordinates of the Brocard points are

$$\Omega_\leftarrow = \left(\frac{1}{b^2} : \frac{1}{c^2} : \frac{1}{a^2} \right),$$

$$\Omega_\rightarrow = \left(\frac{1}{c^2} : \frac{1}{a^2} : \frac{1}{b^2} \right).$$

Proof. Since $\Omega_\leftarrow = BX(-\omega) \cap CY(-\omega)$, we compute its coordinates as follows.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(-\omega)$</td>
<td>a^2</td>
<td>$$</td>
<td>b^2</td>
</tr>
<tr>
<td>$Y(-\omega)$</td>
<td>c^2</td>
<td>b^2</td>
<td>$$</td>
</tr>
<tr>
<td>Ω_\leftarrow</td>
<td>c^2a^2</td>
<td>a^2b^2</td>
<td>b^2c^2</td>
</tr>
</tbody>
</table>

Therefore, $\Omega_\leftarrow = \left(\frac{1}{b^2} : \frac{1}{c^2} : \frac{1}{a^2} \right)$; similarly for Ω_\rightarrow. \qed

16.2 The Brocard circle

Proposition 16.2. (a) The circumcircle of $K(-\omega)$ contains the Brocard points Ω_\rightarrow and Ω_\leftarrow.

(b) The first Brocard triangle $K(-\omega)$ is oppositely similar to ABC.

Proof. (a) We first show that $\Omega_\rightarrow, \Omega_\leftarrow, Y, Z$ are concyclic.

$$\angle(Y\Omega_\rightarrow, \Omega_\rightarrow Z) = \angle(A\Omega_\rightarrow, \Omega_\rightarrow B)$$

$$= \angle(A\Omega_\rightarrow, b) + \angle(b, c) + \angle(c, \Omega_\rightarrow B)$$

$$= \omega + \angle(b, c) + (-\omega)$$

$$= \angle(b, c)$$

$$= -\omega + \angle(b, c) + \omega$$

$$= \angle(C\Omega_\leftarrow, b) + \angle(b, c) + \angle(c, \Omega_\leftarrow A)$$

$$= \angle(C\Omega_\leftarrow, \Omega_\leftarrow A)$$

$$= \angle(Y\Omega_\leftarrow, \Omega_\leftarrow Z).$$

Similarly, $\Omega_\rightarrow, \Omega_\leftarrow, Z, X$ are concyclic, so are $\Omega_\rightarrow, \Omega_\leftarrow, X, Y$. This means that the five points $\Omega_\rightarrow, \Omega_\leftarrow, X, Y, Z$ are concyclic.

(b) It also follows that

$$\angle(YX, XZ) = \angle(Y\Omega_\rightarrow, \Omega_\rightarrow Z) = \angle(b, c).$$

For the same reason, we have $\angle(ZY, YX) = \angle(c, a)$ and $\angle(XZ, ZY) = \angle(a, b)$. This shows that XYZ and ABC are oppositely similar. \qed
Exercise

1. Show that for the first Brocard triangle \(XYZ \),
\[
\angle(\Omega \to X, X \Omega) = \angle(\Omega \to Y, Y \Omega) = \angle(\Omega \to Z, Z \Omega) = 2\omega.
\]

Proposition 16.3. The first Brocard triangle is inscribed in the circle with diameter \(OK \).

Proof. We prove this indirectly. Consider the circle \(C \) with diameter \(OK \). The perpendicular bisector of \(BC \) intersects \(C \) at \(O \) and a second point \(X' \). We claim that \(X' \) coincides with the vertex \(X = X(-\omega) \) of the first Brocard triangle.

Clearly, \(KX' \) is perpendicular to \(OX' \), and is parallel to \(BC \). This means that the distance from \(X' \) to \(BC \) is
\[
a^2 + b^2 + c^2 \cdot \frac{S}{a}.
\]
From this,
\[
cot \angle(a, BX') = \frac{a^2 + b^2 + c^2}{a^2 \cdot \frac{S}{a}} = \frac{a^2 + b^2 + c^2}{S} = \cot \omega.
\]
This means that \(\angle(a, BX') = \omega \), and \(X' \) lies on the line \(B\Omega \). Since \(X' \) lies on the perpendicular bisector of \(BC \), it is necessarily the vertex \(X(-\omega) \) of the first Brocard triangle.

The same reasoning shows that the other two vertices \(Y(-\omega) \) and \(Z(-\omega) \) also lie on the same circle with diameter \(OK \). \(\square \)

The circle with diameter \(OK \) is called the Brocard circle. It is also called the seven-point circle of triangle \(ABC \) since it contains, along with \(O, K \), the two Brocard points and the three vertices of \(K(-\omega) \).

Proposition 16.4. The two Brocard points \(\Omega \) and \(\Omega \) are symmetric with respect to the Brocard axis \(OK \).

Proof. It is enough to verify that the midpoint of \(\Omega \Omega \), namely, \((a^2(b^2+c^2) : b^2(c^2+a^2) : c^2(a^2+b^2)) \), lies on the Brocard axis
\[
b^2c^2(b^2 - c^2)x + c^2a^2(c^2 - a^2)y + a^2b^2(a^2 - b^2)z = 0.
\]
\(\square \)

\[\text{\footnotesize{\(1\)}}\angle(\Omega \to X, X \Omega) = \angle(C \Omega \to, B \Omega) = \angle(C \Omega \to, a) + \angle(a, B \Omega) = \omega + \omega = 2\omega.\]
Proposition 16.5. The circumconic through the Brocard points is

\[(a^4 - b^2c^2)yz + (b^4 - c^2a^2)zx + (c^4 - a^2b^2)xy = 0.\]

Its center is the point

\[(((a^2 - bc)(a^2 + bc)(a^4 + a^2(b^2 + c^2) - (b^4 + b^2c^2 + c^4)) : \cdots : \cdots).\]

This circumonic also contains
(i) the Steiner point \(S_t\),
(ii) the Kiepert perspector \(K(\omega) = (\frac{1}{b^2 + c^2} : \frac{1}{c^2 + a^2} : \frac{1}{a^2 + b^2}) = X_{83}\),
(iii) \(X_{880} = (\frac{a^4 - b^2c^2}{a^2(b^2 - c^2)} : \cdots : \cdots).\)

Exercise

1. Let \(XYZ\) be the pedal triangle of \(\Omega_\rightarrow\) and \(X'Y'Z'\) be that of \(\Omega_\leftarrow\).

(a) Find the coordinates of these pedals.
(b) Show that \(Y'Z\) is parallel to \(BC\).
(c) The triangle bounded by the three lines \(Y'Z\), \(Z'X\) and \(X'Y\) is homothetic to triangle \(ABC\). What is the homothetic center? \(^2\)
(d) The triangles \(XYZ\) and \(Y'Z'X'\) are congruent.

\(^2\)The symmedian point.
The second Brocard triangle

Consider the circles C_{AAB} through A, B, tangent to CA at A, and C_{CAA} through A, C, tangent to AB at A.

Since C_{AAB} passes through A and B, its equation is of the form

$$a^2yz + b^2zx + c^2xy - (x + y + z) \cdot rz = 0$$

for some r. Since this is tangent to CA, if we set $y = 0$, the resulting quadratic equation $b^2zx - r(x + z)z = 0$ should have only one solution in $z = 0$. This means $r = b^2$. Therefore, we have

$$C_{AAB} : a^2yz + b^2zx + c^2xy - b^2(x + y + z)z = 0.$$

Similarly,

$$C_{CAA} : a^2yz + b^2zx + c^2xy - c^2(x + y + z)y = 0.$$

The radical axis of the two circles is the line $b^2z = c^2y$, which is clearly the A-symmedian. If we put $y = b^2$ and $z = c^2$ into the equation of C_{AAB}, we obtain $x = b^2 + c^2 - a^2$. Thus, The two circles intersect at

$$X_2 = (b^2 + c^2 - a^2 : b^2 : c^2).$$

The symmedian AK intersects the circumcircle again at

$$A' = (-a^2 : 2b^2 : 2c^2).$$

The point X_2 is the midpoint of AA'. Therefore, OX_2 is perpendicular to the symmedian AA', and X_2 lies on the Brocard circle.

The same reasoning applies to the two other pairs of circles, and we obtain the second Brocard triangle inscribed in the Brocard circle:

$$X_2 = (b^2 + c^2 - a^2 : b^2 : c^2),$$
$$Y_2 = (a^2 : c^2 + a^2 - b^2 : c^2),$$
$$Z_2 = (a^2 : b^2 : a^2 + b^2 - c^2).$$

Exercise

1. Show that the first and the second Brocard triangles are perspective and find the perspector.

3The centroid.
16.4 The Steiner and Tarry points

Proposition 16.6. Let \(XYZ \) be the first Brocard triangle.

(a) The parallels through \(A, B, C \) to the corresponding sides \(YZ, ZX, XY \) intersect at a point \(S_t \) on the circumcircle.

(b) The perpendiculars through \(A, B, C \) to the corresponding sides \(YZ, ZX, XY \) intersect at a point \(T_a \) the circumcircle.

(c) The points \(S_t \) and \(T_a \) are antipodal.

Proof. (a) From the coordinates of the vertices of the first Brocard triangle, the infinite point of the line \(YZ \) is \((b^2 - c^2, a^2 - b^2, c^2 - a^2)\). The parallel through \(A \) has equation \((c^2 - a^2)y - (a^2 - b^2)z = 0\). This line intersects the circumcircle at \((\frac{1}{b^2-c^2}, \frac{1}{c^2-a^2}, \frac{1}{a^2-b^2}) \), which is the Steiner point \(S_t \). This is also true for the other two parallels.

(b) and (c) follow immediately from (a).

Remarks. (1) \(S_t \) is also the fourth intersection of the circumcircle with the Steiner circum-ellipse (with center \(G \)).

(2) \(T_a \) is also the fourth intersection of the circumcircle with the Kiepert hyperbola.
Exercise

1. O and K are the Tarry and Steiner points of the first Brocard triangle.
16.5 The third Brocard triangle

If the lines OA, OB, OC intersect the Brocard circle again at X_3, Y_3, Z_3, we call $X_3Y_3Z_3$ the third Brocard triangle of ABC. These vertices have coordinates

$X_3 = (a^4 + (b^2 - c^2)^2 : b^2(c^2 + a^2 - b^2) : c^2(a^2 + b^2 - c^2)),$

$Y_3 = (a^2(b^2 + c^2 - a^2) : b^4 + (c^2 - a^2)^2 : c^2(a^2 + b^2 - c^2)),$

$Z_3 = (a^2(b^2 + c^2 - a^2) : b^2(c^2 + a^2 - b^2) : c^4 + (a^2 - b^2)^2).$

Proposition 16.7. The second and third Brocard triangles are perspective at the circumcenter

$$(a^4S_A : b^4S_B : c^4S_C).$$

$$-b^2c^2(b^2 - c^2)x - c^2(c^4 + a^4 - c^2(a^2 + b^2))y + b^2(a^4 + b^4 - b^2(c^2 + a^2))x = 0.$$

Remark. The lines X_1X_3, Y_1Y_3, Z_1Z_3 bound a triangle perspective with ABC at the orthocenter. The vertices are $(S_A : S_C : S_B)$ etc.

The points X_{182}, X_{184} and the centroid are collinear.