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1 Introduction

Since their introduction in the mid 70’s (see [5] and [1], as well as [7] for the discrete time
analogue), observation spaces for nonlinear control systems

ẋ = f(x) +
∑

uigi(x) , y = h(x) (1)

have played a central role in the understanding of realization theory. For the system (1), one
defines the observation space F as the linear span of the Lie derivatives

LX1 · · ·LXk
h,

where each Xi is either f or one of the gi’s. (Here we are taking states x(t) in a manifold,
f, g1, . . . , gm vector fields, and h a function from the manifold to IR, the output map.)

It is known that many important properties of systems, such as the possibility of simulating
such a system by one described by linear vector fields (the “bilinear immersion” problem, [1]),
are characterized by properties of this space.

It was shown in [8] that a different type of “observation space” is much more important
when one studies questions of input output equations satisfied by (1), i.e. equations of the type

E(y(k)(t), . . . , y′(t), y(t), u(k)(t), . . . , u′(t), u(t)) = 0 (2)

that hold for all those pairs of functions (u(·), y(·)) that arise as solutions of (1). This alternative
observation space is obtained by taking the derivatives y(t), y′(t), . . . as functions of initial
states, over all u(t), u′(t), . . .. This space is obtained by considering differentiable controls and
time-derivatives, while the space previously considered is based on derivatives with respect to
switching times in piecewise constant controls.

The central fact used in [8] in order to relate i/o equations to realizability is the equality
of the two observation spaces defined in the above manners. This equality is fundamental
not only for the results in that paper, which hold under the assumption that the spaces are
finite-dimensional, but also for the far more general results recently announced in [9]. However,
the techniques used in [8] are based on a topological argument, involving closure in the weak
topology, which does not in any way extend to the more general case of infinite dimensional
observation spaces. Since the latter are the norm rather than the exception (unless the system
can be simulated by a bilinear system to start with), one needs to establish the equality of these
two types of spaces using totally different combinatorial techniques. That is the purpose of this
paper.

In the next section we provide background material on generating series. We use this
formalism because in applications one does not want to restrict to systems [1] but one rather
wants to treat the case of arbitrary input/output operators. Then we introduce rigorously the
two spaces and establish their equality. An important role is played by an analoge of the main
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result in [4]. Finally we extend our results to families of operators and then give a translation
of the results into the language of systems (1).

2 Generating Series

Let m be a fixed integer and I = {0, 1, . . . , m}. For any integer k ≥ 1, we define Ik to be the
set of all sequences (i1 i2 . . . ik), where is ∈ I, 1 ≤ s ≤ k. For k = 0, we use I0 to denote the
set whose only element is the empty sequence φ. Let

I∗ =
⋃
k≥0

Ik. (3)

Then I∗ is a free monoid with the composition rule:

(i1i2 . . . ik)(j1j2 . . . jl) = (i1i2 . . . ikj1j2 . . . jl).

If ι ∈ I l, then we say that the length of ι, denoted by |ι|, is l.

Consider now the “alphabet” set P = {η0, η1, . . . , ηn} and P ∗, the free monoid generated
by P , where the neutral element of P ∗ is the empty word, denoted by 1, and the product is
concatenation. Let P k = {ηi1ηi2 . . . ηik : 1 ≤ is ≤ m, 1 ≤ s ≤ k} for each k ≥ 0. We define
P to be the IR-algebra generated by P ∗, i.e, the set of all polynomials in the variables ηi’s. A
power series in the noncommutative variables η0, η1, . . . , ηn is a formal power series

c = 〈c, φ〉+
∞∑

k=1

∑
ι∈Ik

〈c, ηι〉ηι, (4)

where ηι = ηi1ηi2 · · · ηil if ι = i1i2 · · · il, and 〈c, ηι〉 ∈ IR. Note that c is a polynomial if only
finitely many 〈c, ηι〉’s are non-zero. A power series is nothing more than a mapping from I∗ to
IR; as we shall see later, however, the algebraic structures suggested by the series formalism are
very important. We use S to denote the set of all power series.

For c, d ∈ S and γ ∈ IR, γc + d is defined as the following:

〈γc + d, ηι〉 = γ〈c, ηι〉+ 〈d, ηι〉.

Thus, S forms a vector space over IR.

We shall say that the power series c is convergent if

|〈c, ηι〉| ≤ KMkk! for each ι ∈ Ik, and each k ≥ 0, (5)

where K and M are some constants.

Let T be a fixed value of time and let UT be the set of all essentially bounded functions
u : [0, T ] → IRm endowed with the L1 norm. We write ‖u‖∞ for max{‖ui‖∞ :, 1 ≤ i ≤ m} if
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ui is the i-th component of u, and ‖ui‖∞ is the essential supernorm of ui. For each u ∈ UT and
ι ∈ I l, we define inductively the functions Vι = Vι[u] ∈ C[0, T ] by

Vφ = 1

and
Vi1···il+1

[u](t) =
∫ t

0
ui1(s)Vi2···il+1

(s) ds, (6)

where ui is the i-th coordinate of u(t) for i = 1, 2, . . . , m and u0(t) ≡ 1. It can be proved that
each map

UT → C[0, T ], u 7→ Vι[u]

is continuous with respect to L1 norm in UT , C0 norm in C[0, T ].

Suppose c is convergent and let K and M be as in (5). Then for any

T < (Mm + M)−1 (7)

the series of functions
Fc[u](t) =

∑
〈c, ηι〉Vι[u](t) (8)

is uniformly and absolutely convergent for all t ∈ [0, T ] and all those u ∈ UT such that ‖u‖∞ ≤ 1
(cf [3]). In fact, (8) is absolutely and uniformly convergent for all t ∈ [0, T ] provided T‖u‖∞ <

(Mm + M)−1. For each nonnegative T , let

VT = {u ∈ UT : ‖u‖∞ < 1}. (9)

We say that T is admissible for c if T satisfies (7). Since each operator u → Vι[u] is continuous, it
follows that Fc : VT → C[0, T ] is continuous if T is admissible for c. We call Fc an input/output
map defined on VT . Thus every convergent power series defines an i/o map. On the other hand,
the power series c is uniquely determined by Fc in the following sense:

Lemma 2.1 Suppose that c and d are two convergent power series. If Fc = Fd on VT for any
T > 0, then c = d.

Proof. It’s enough to show that if c is convergent and Fc = 0 on VT for some small T , then
c = 0. Consider piecewise constant controls in VT , and use the notation

u = (µ1, t1)(µ2, t2) · · · (µk, tk)

to denote the piecewise constant control whose value is µi in the time interval


i−1∑

j=0

tj ,
i∑

i=0

tj



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where
µj = (µ1j , µ2j , . . . , µmj) ∈ IRm, |µij | < 1, 1 ≤ j ≤ k, 1 ≤ i ≤ m

and
t0 = 0.

By assumption, for any µi, ti, such that
∑

ti < T, Fc[(µ1, t1)(µ2, t2) · · · (µk, tk)](t) = 0, where
t =

∑
ti. Take y = Fc[u] as a function of µ1, . . . , µk and t1, . . . , tk. Then

∂k

∂t1 · · · ∂tk

∣∣∣∣∣t=0+

∂s

∂µi1j1 · · · ∂µisjs

∣∣∣∣∣
µ=0

y = 0 (10)

for all i1, . . . , is, j1, . . . js, where the evaluation at t+ means that we evaluate at t+1 , . . . , t+k . We
claim that, for i1, . . . , is, j1, . . . , js given such that jr 6= jq if r 6= q,

∂k

∂t1 · · · ∂tk

∣∣∣∣∣t=0+

∂s

∂µi1j1 · · · ∂µisjs

∣∣∣∣∣
µ=0

y = 〈c, η
l1

. . . η
lk
〉, (11)

where

lp =

{
ir if k − (p− 1) = jr

0 if k − (p− 1) /∈ {j1, . . . , js}.
To see this, write y(t) =

∑〈c, ηι〉Vι(t). Then, directly from the definition (6),

∂k

∂t1 · · · ∂tk

∣∣∣
t=0+

y =
∑

〈c, η
l1

. . . η
lk
〉µ

l1k
. . . µ

lk1
. (12)

One can see that if {(i1, j1), · · · , (is, js)} ⊆ {(l1, k), · · · , (lk, 1)} and lp = 0 for p /∈ {j1, . . . , js}
then

∂s

∂µi1j1 · · · ∂µisjs

∣∣
µ=0 µ

l1k
· · ·µ

lk1
= 1,

otherwise,
∂s

∂µi1j1 · · · ∂µisjs

∣∣
µ=0 µ

l1k
· · ·µ

lk1
= 0.

Combining this fact and (12), we get (10). It follows immediately that if Fc[u] = 0 for all
piecewise constant controls, then c = 0.

3 Observation spaces

To each monomial α = ηι, we associate a shift operator c 7→ α−1c defined by

〈α−1c, ηι〉 = 〈c, αηι〉 for ηι ∈ P ∗.
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Note that α−1
2 α−1

1 = (α1α2)−1c. It was shown in [8] that if c is convergent and T is admissible
for c, then α−1c is also convergent and T is also admissible for α−1c for any α ∈ P ∗. Using this
notation, we get the following fundamental formula [2], which follows from the defition (6):

d

dt
Fc[u](t) = Fη−1

0 c[u](t) +
m∑

j=1

uj(t) Fη−1
j c[u](t) (13)

for any u ∈ VT which is continuous.

Formula (13) implies, by induction, that if u ∈ VT is of class Ck−1, then Fc[u] is of class Ck.

In realization theory, the concept of observation spaces plays a very important role. One
may define observation spaces in two ways. Let’s now introduce the first approach. To each
convergent power series c, we define the observation space F1 to be the space spanned by all
the power series α−1c over IR, i.e.,

F1(c) = span IR{α−1c : α ∈ P ∗}. (14)

It is well known that Fc can be realized by a bilinear system if and only if dimF1(c) < ∞; see
e.g. [1].

To define the second type of observation spaces, we need to introduce the shuffle product on
P (cf [6]). The shuffle product on P is defined in the following way. First, inductively on the
length of of words in P ∗, we let

1 z = z 1 = z for any z ∈ P ;

wz w′z′ = (w w′z′)z + (wz w′)z′ for any w, w′ ∈ P ∗, z, z′ ∈ P .

Notice that the shuffle product is commutative:

w1 w2 = w2 w1, for any w1, w2 ∈ P ∗.

If c =
∑〈c, ηκ〉ηκ and d =

∑〈d, ηι〉ηι are polynomials, then

c d :=
∑
n

∑
|κ|+|η|=n

〈c, ηκ〉〈d, ηι〉ηι ηκ.

The following lemma can be proved by induction n:

Lemma 3.1 Suppose w1, . . . , wn ∈ P ∗ and wi = w′
izi with w′

i ∈ P ∗, zi ∈ P . Then

n∑
s=1

(w1 · · · w′
s · · · wn)zs = w1 w2 · · · wn.

2
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Now consider for each q ≥ 1, the following set of 2× q matrices:

Sq = {
(

j1 j2 · · · jq

i1 i2 · · · iq

)
: is, js ∈ ZZ, 1 ≤ is ≤ m, (0, 1) ≤ (j1, i1) ≤ · · · ≤ (iq, jq)}, (15)

where “≤” is the lexicographgic order on the set {(i, j) : i, j ∈ ZZ}. For each element

(
j1 j2 · · · jq

i1 i2 · · · iq

)

in Sq and n ≥ q +
∑

jr, we define

Γj1···jq

i1···iq (n) = ηk
0 ηi1X

j1 ηi2X
j2 · · · ηiqX

jq |X=1, (16)

where k = n− q−∑
js. The evaluation is interpreted as follows: first introduce a new variable

X, then perform all shuffles, and finally delete X from the result. Note that (16) is different
from ηi1 ηi2 · · · ηiq , for example,

η0 η1X|X=1 = η0η1 + 2η1η0

while
η0 η1 = η0η1 + η1η0.

For w ∈ P ∗ and c ∈ S, we define ψc(w) = w−1c. For any polynomial d =
∑〈d, ηκ〉ηκ, we define

ψc(d) =
∑

〈d, ηκ〉ηκ
−1c.

Now let Xj = (X1j , . . . , Xmj) be m indeterminates over IR, for j ≥ 0. For any n > 0, let

cn(X0, . . . , Xn−1) = ψc(ηn
0 ) +

n∑
q=0

∑ 1
s1! · · · sp!

ψc

(
Γj1···jq

i1···iq (n)
)

Xi1j1 · · ·Xiqjq , (17)

where the second sum is taken over all those

(
j1 j2 · · · jq

i1 i2 · · · iq

)
∈ Sq such that

∑
js + q ≤ n,

and where s1, . . . , sp are integers so that

(
j1 j2 · · · jq

i1 i2 · · · iq

)
=




β1 · · ·β1 β2 · · ·β2 · · · βp · · ·βp

α1 · · ·α1︸ ︷︷ ︸
s1

α2 · · ·α2︸ ︷︷ ︸
s2

· · · αp · · ·αp︸ ︷︷ ︸
sp




and (α1, β1) < (α2, β2) < · · · < (αp, βp). For n = 0, we define

c0 := c.

We are now ready to introduce the second type of observation space associated to c, F2(c).
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This is defined as follows:

F2(c) = span IR {cn(µ0, . . . , µn−1) : µi ∈ IRm, 0 ≤ i ≤ n− 1, n ≥ 0} . (18)

We will see below that the elements of F2(c) are closely related to the derivatives of F [u](t)
with respect to time. A central fact that will be needed in the proof of our main result is that
the coefficients of the generating series can be partitioned into infinitely many sets of finitely
many elements such that the coefficient of each monomial u

(j1)
i1

u
(j2)
i2

· · ·u(jp)
ip

appearing when
computing the derivatives y(s) only depends on elements of one of these sets. This can be
proved directly, but the following lemma gives a useful expression. This formula is an analogue,
proved by using different techniques, of a similar formula proved for state space systems, given
in the paper [4].

Lemma 3.2 If u ∈ VT is of class Cn−1 and T is admissible for c, then we have

dn

dtn
Fc[u](t) = Fcn(u(t),...,un−1(t))[u](t). (19)

Before proving this formula, we look at an example to illustrate its meaning.

Example 3.3 For n = 2, we have

c2(X1, X2) = ψc(η2
0) +

m∑
i=1

ψc(Γ0
i (2))Xi0

+
∑
i<j

ψc(Γ00
ij (2))Xi0Xj0 +

m∑
i=1

1
2
ψc(Γ00

ii (2))X2
i0 +

m∑
i=1

ψc(Γ1
i (2))Xi1

= (η0η0)−1c +
∑ (

(η0ηi)−1c + (η1η0)−1c
)

Xi0

+
∑
i<j

(
(ηiηj)−1c + (ηjηi)−1c

)
Xi0Xj0 +

∑
(ηiηi)−1c X2

i0

+
∑

η−1
i c Xi1.

Thus, for n = 2, formula (19) becomes:

y′′(t) = Fc2(u(t),u′(t))[u](t) = F(η0η0)−1c[u](t) +
∑ (

F(η0ηi)−1c[u](t) + F(ηiη0)−1c[u](t)
)

ui(t)

+
∑
i<j

(
F(ηiηj)−1c[u](t) + F(ηjηi)−1c[u](t)

)
ui(t)uj(t) +

∑
F(ηiηi)−1c[u](t) u2

i

+
∑

Fη−1
i c[u](t) u′i(t). (20)

2

Proof of lemma 3.2: For each ηι ∈ P ∗, define θc(ηι) = Fη−1
ι c and for any polynomial d =∑〈d, ηκ〉ηκ, define

θc(d) =
∑

〈d, ηκ〉θc(ηι) =
∑

〈d, ηκ〉Fη−1
κ c.
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Then (19) is equivalent to

y(n)(t) =
dn

dtn
Fc[u](t) =

n∑
q=0

∑
Sq

1
s1! · · · sp!

θc(Γ
j1···jq

i1···iq (n))(t)u
(j1)
i1

(t) · · ·ujq

(iq)(t), (21)

in the other words, y(n)(t) is a polynomial in u(t), . . . , u(n)(t) whose coefficients are the
θc(ηι)(t)’s, and the coefficient of u

(j1)
i1

(t) · · ·u(jq)
iq

(t) in y(n)(t) is

1
s1! · · · sp!

θc

(
Γj1···jq

i1···iq (n)
)

(t). (22)

Note that the right side of (22) can also be written as

1
s1! · · · sp!

θc

(
(ηk

0
s1ηα1X

β1 s2ηα2X
β2 · · · spηαpX

βp)|X=1

)
(t)

if u
(j1)
i1

· · ·u(jq)
iq

=
(
u

(β1)
α1

)s1 · · ·
(
u

(βp)
αp

)sp

, where

w1
s1w2

s2w3 · · · sp−1wp = w1 w2 w2 · · · w2︸ ︷︷ ︸
s1

w3 · · · w3︸ ︷︷ ︸
s2

· · · wp · · · wp︸ ︷︷ ︸
sp−1

.
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We now use induction to prove the lemma. From (13) we see that the conclusion is true for
n = 1.

Suppose the conclusion is true for n−1. Consider the coefficient of u
(j1)
i1

· · ·u(jq)
iq

in y(n). By
induction from formula (13) it can be seen that

∑
js+q ≤ n. First we assume that

∑
js+q < n.

Let k = n−∑
js − q. Suppose

u
(j1)
i1

· · ·u(jq)
iq

= (u(β1)
α1

)s1 · · · (u(βp)
αp

)sp ,

where (α1, β1) < · · · < (αp, βp). Further, we assume that βr = 0 for r ≤ l. Let

ŷ1(t) =
p∑

r=1

1
τr

θ(wr)(t)
(
u(β1)

α1

)s1 · · ·
(
v(βr)
αr

)sr · · ·
(
u(βp)

αp

)sp

,

where

(
v(βr)
αr

)sr

=




usr−1
αr

if βr = 0

(
u

(βr)
αr

)sr−1 · uβr−1
αr

if βr ≥ 1,

and τr = s′1! · · · s′p′ ! if

(
u(β1)

α1

)s1 · · ·
(
v(βr)
αr

)sr · · ·
(
u(βp)

αp

)sp

=
(
u

(β′1)

α′1

)s′1 · · ·
(

u
(β′

p′ )
α′

p′

)s′
p′

,

and,

wr =




ηk
0

s1ηα1 · · · (sr−1)ηαr · · · spηαpX
βp if βr = 0

ηk
0

s1ηα1 · · · sr−1ηαrX
βr ηαrX

βr−1 · · · spηαpX
βp if βr 6= 0.

Note that the coefficient of u
(j1)
i1

· · ·u(jq)
iq

in

d

dt

{
1
τr

θ(wr)(t)
(
u(β1)

α1

)s1 · · ·
(
v(βr)
αr

)sr · · ·
(
u(βp)

αp

)sp
}

is
1

s1 · · · (sr − 1)! · · · sp!
θ(wrηr)(t),

if r ≤ l, and,
1

s1! · · · (sr − 1)! · · · sp!
θ(wr)(t),

if r > l. Let

y1(t) = ŷ1(t) +
1

s1! · · · sp!
θc

(
Γj1···jq

i1···iq (n− 1)
)

u
(j1)
i1

(t) · · ·u(jq)
iq

(t).

By induction assumption, the coefficient of u
(j1)
i1

· · ·u(jq)
iq

in y(n)(t) is the same as in y′1(t). Thus,
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this coefficient is θc(w)(t), where

w =

{
l∑

r=1

1
s1! · · · (sr − 1)! · · · sp!

(ηk
0

s1ηα1 · · · sr−1ηαr · · · spηαpX
βp)ηαr

+
p∑

r=l+1

1
s1! · · · (sr − 1)! · · · sp!

ηk
0

s1ηα1 · · · sr−1ηαrX
βr ηαrX

βr−1 · · · spηαpX
βp

+
1

s1!s2! · · · sp!
(ηk−1

0
s1ηα2 · · · spηαpX

βp)η0

}
|X=1 . (23)

Notice that

w1
r−1w2 =

1
r

r−1∑
t=0

w1
tw2 1 r−1−tw2

and

{
w1

r−1w2X
β w2X

β−1
}
|X=1 =

{
(w1

r−1w2X
β w2X

β−1)X
}
|X=1

=
1
r

{(
r−1∑
t=0

w1
tw2X

β w2X
β−1 r−1−tw2X

β

)
X

}
|X=1 .

Applying lemma (3.1) to (23), we get

w =
1

s1! · · · sp!

{
ηk
0

s1ηα1 · · · spηαpX
βp

}
|X=1

=
1

s1! · · · sp!
Γj1···jq

i1···iq (n).

In the case q +
∑

js = n, the proof is virtually the same except that k = 0, which leads to
the fact that the coefficient of u

(j1)
i1

· · ·u(jq)
iq

in y(n−1) is 0, so the last term in (23) dissappears.

4 Main Result

In last section we defined Γj1···jq

i1···iq (n) and cn(X0, . . . , Xn−1). One can see that cn(X0, . . . , Xn−1)
is a polynomial on the Xi’s with coefficients belonging to F1(c). Thus, cn(µ0, . . . , µn−1) is a
linear combination of elements of F1(c) for each fixed value of (µ0, . . . , µn−1). Therefore,

F2(c) ⊆ F1(c).

But in fact, these two spaces are the same as we can see in the following theorem.

Theorem 1 If c is a power series, then F1(c) = F2(c).
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Proof. We’ve shown that F2(c) ⊆ F1(c). The other direction is however much less trivial. Now
for fixed positive integers k and i1, i2, . . . , iq such that 1 ≤ i1 ≤ i2 ≤ · · · ≤ iq ≤ m, let

Sk(i1, i2, . . . , iq) =


σ(0, . . . , 0︸ ︷︷ ︸

k

, i1, i2, . . . , iq) : σ ∈ Sn


 ,

where n = k + q and Sn is the permutation group on a set of n elements. Let

Ωk(i1, i2, . . . , iq) =
{
(η

l1
η

l2
· · · η

ln
)−1c : (l1, . . . , ln) ∈ Sk(i1, i2, . . . , iq)

}
.

Then
F1(c) = span IR {d ∈ Ωk(i1, i2, . . . , iq) : k ≥ 0, q ≥ 0} .

Thus the theorem can be proved by showing that

Ωk(i1, i2, . . . , iq) ⊆ F2(c) (24)

for any k, q, and (i1, i2, . . . , iq). Now fix k and (i1, i2, . . . , iq) and put the lexicographic order on
Ωk(i1, i2, . . . , iq) according to the order of (l1, l2, . . . , ln). Write the elements of Ωk(i1, i2, . . . , iq)
ordered as Y1, Y2, . . . , Yr. Let

Ω̂k(i1, i2, . . . , iq) =
{
d = ψc

(
Γj1···jq

i1···iq (k)
)

: js ≥ 0
}

.

Then we have Ω̂k(i1, i2, . . . , iq) ⊆ F2(c). Put the lexicographic order on Ω̂k(i1, i2, . . . , iq) ac-
cording to the order of (

∑
js, j1, . . . , jq). Notice that for each element di ∈ Ω̂k(i1, i2, . . . , iq),

there exist some positive integers aij such that

di =
r∑

j=1

aijYj .

Let A be the matrix of r columns and infinitely many rows whose (i, j)-th entry is aij , i.e,
A = (aij).

We claim that A is of full column rank in the sense that there is no nonzero vector v ∈ IRn

such that Av = 0. Suppose there is some v 6= 0 such that Av = 0. Construct a polynomial e in
the following way:

〈e, η
l1
· · · η

lt
〉 = 0

if (l1, . . . , lt) /∈ Sk(i1, i2, . . . , iq) and

〈e, η
l1
· · · η

lt
〉 = vi
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if (l1, . . . , lt) ∈ Sk(i1, i2, . . . , iq) and (η
l1

. . . η
lt
)−1c corresponds to the i-th element of

Ωk(i1, i2, . . . , iq). By the definitions of A and d, we know that

en(µ0, . . . , µn1) = 0 for any n.

Therefore,
dn

dtn
Fe[u](0) = Fdn(µ0,...,µn−1)[u](0) = 0

for any n and any analytic control u, which implies that Fe[u] = 0 for any analytic controls.
Since analytic controls are dense in VT (under the L1 topology), it follows that Fe ≡ 0. By
lemma (2.1), e = 0. Thus, v = 0, a contradiction to the assumption. Hence, A is of full column
rank.

Now let As be the subspace of IRr spanned by the first s row vectors of A. Then

A1 ⊆ A2 ⊆ · · · ⊆ As ⊆ · · · .

Since Ar ⊆ IRr for any r, there exists some s0 > 0 such that As = As0 for every s ≥ s0. Let A1

be the s0 × r submatrix of A consisting the first s0 rows of A. Then

A = TA1

for some matrix T . Therefore
rankA1 = r.

By the construction of A1, we know that

A1




Y1

Y2
...

Yr


 =




d1

d2
...
dr




From the facts that di ∈ F2(c) and A1 is of full column rank, we get the conclusion that
Yi ∈ F2(c) for each i, therefore, (24) holds.

Since k, q and (i1, i2, . . . , iq) were arbitrary, we get the desired conclusion F1(c) = F2(c).

5 Families of Series and Systems

In this section we consider families of power series. Let Λ be a index set. We say that c is a
family of power series (parameterized by λ ∈ Λ) if c := {cλ : λ ∈ Λ}, where cλ is a power series
for each fixed λ. A family c can also be viewed as a power series with coefficient belonging to

12



the ring of functions from Λ to IR, i.e,

c =
∑

〈c, ηι〉ηι,

where 〈c, ηι〉 : Λ → IR, 〈c, ηι〉(λ) 7→ 〈cλ, ηι〉.
Let S be the set of all families of power series. For c,d ∈ S and γ ∈ IR, γc + d is defined

to be the family of power series {γcλ + dλ : λ ∈ Λ}. Thus S forms a vector space over IR.

We say that c is a convergent family if each member of the family is convergent. For
any monomial α ∈ P ∗, α−1c is defined to be the family {α−1cλ : λ ∈ Λ}. For any n ≥ 0,
cn(X0, . . . , Xn−1) is defined to be the family

{
cλ
n(X0, . . . , Xn−1) : λ ∈ Λ

}
,

where Xi = (Xi1, . . . , Xim) are m indeterminates over IR, i ≥ 0. Appling lemma (3.2), we have
that

dn

dtn
F λ

c [u](t) = Fcλ
n(u(t),...,un−1(t))[u](t), (25)

for each λ.

As in the case of single power series, we associate to c two types of observation spaces in
the following way:

F1(c) := span IR{α−1c : α ∈ P ∗}.

F2(c) := span IR {cn(µ0, . . . , µn−1) : µi ∈ IRm, 0 ≤ i ≤ n− 1, n ≥ 0} .

Note that F1(c) (respectively, F2(c)) is formally analogous to F1(c) (respectively, F2(c))
studied before. Using c and d instead of c and d in the proof of theorem 1, we get the following
result:

Theorem 2 If c is a family of power series, then F1(c) = F2(c).

Now consider a state space system

ẋ = g0(x) +
∑

uigi(x) (26)

y = h(x)

where x(t) ∈ X, a Cω manifold, g0, g1, . . . , gm are Cω vector fields, and h a Cω function from X

to IR. One type of observation space associated with (26) is

F1 := span IR{Lgi1
· · ·Lgik

h : k ≥ 0}.

For µ0, . . . , µk−1 given, we let, for each x ∈ X,

yµ0···µk−1(x) :=
dk

dtk
|t=0 yx(t),
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where yx(t) is the output corresponding to initial state x and any C∞ input u such that u(j)(0) =
µj for 0 ≤ j ≤ k − 1.

We associate to (26) a second type of observation space, as follows:

F2 := span IR{yµ1···µk−1 : µi ∈ IRm, k ≥ 0}.

By a fundamental formula due to Fliess (see [3]), the input/output map of (26) can be written
as

y(t) = Fc[u](t),

where the family c is defined by

〈c, ηi1 · · · ηik〉 = Lgik
· · ·Lgi1

h,

or, equivalently, for the output corresponding to the initial state x,

yx(t) = Fcx [u](t),

where
〈cx, ηi1 · · · ηik〉 = Lgik

· · ·Lgi1
h(x).

Thus,
Lgik

· · ·Lgi1
h = 〈c, ηi1 · · · ηik〉 = 〈(ηi1 · · · ηik)−1c, φ〉,

and, therefore,
F1 = {〈d, φ〉 : d ∈ F1(c)}.

By (25), we know that

y
µ0···µk−1
x = Fcx

k
(µ0,...,µ

k−1
)[u](0) = 〈cx

k(µ0, . . . , µk−1
), φ〉.

Hence,
F2 = {〈d, φ〉 : d ∈ F2(c)}.

So the following conclusion follows immediately from theorem (2):

Corollary 5.1 For the state space system (26), F1 = F2.

2
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