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Abstract

This paper presents a converse Lyapunov theorem for discrete-time systems with disturbances taking values in compact sets.
Among several new stability results, it is shown that a smooth Lyapunov function exists for a family of time-varying discrete
systems if these systems are robustly globally asymptotically stable. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is a long history in the search of Lyapunov
functions for dynamical systems. In this article, we
present a new converse Lyapunov theorem for nonau-
tonomous discrete-time nonlinear systems a<ected
by disturbances d(·) taking values in a compact
set. Our main contribution is to prove the follow-
ing: a discrete-time system with disturbances, or
time-varying parameters, taking values in a com-
pact set, is uniformly globally asymptotically stable
(UGAS) with respect to a closed, not necessarily
compact, invariant set A if and only if there exists a
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smooth Lyapunov function V with respect to the set
A; see Theorem 1 in Section 2.3. To the best of the
authors’ knowledge, even in the special case when the
systems are free of disturbances and when the invari-
ant set A is compact, this result is new in the litera-
ture. For a general discussion on stability with respect
to closed invariant sets in the continuous time case,
the interested reader should consult [22], where sev-
eral converse Lyapunov theorems were provided in
the general nonautonomous case.
This work parallels the previous work [10] where

a converse Lyapunov theorem was obtained for
continuous-time systems with disturbances. We are
motivated by the importance and application of the
theory of discrete-time (or, di<erence) systems in
various Jelds [1,9,8]. Recently, the stability theory of
di<erence systems has been used to design stabilizing
control laws for discrete-time nonlinear systems; see,
e.g., [3,12,19–21] and references therein.
In the past literature, quite a few converse theo-

rems have been established in the discrete-time case
for systems that are free of disturbances. However, the
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results were formulated either under the assumption of
(local) exponential stability, see e.g., [11,13], or un-
der a global Lipschitz condition, see e.g., [1,8,11,17].
The Lipschitz condition was weakened in [4], but
the Lyapunov functions were only constructed locally
around the equilibrium. In [20], a local converse Lya-
punov theorem was obtained for systems that are lo-
cally asymptotically stable with respect to compact
invariant sets uniformly on time-varying parameters,
assuming various conditions involving prolongations
of the dynamical systems. (See also [10] for some de-
tailed discussions of the prolongation approach in the
continuous-time case.) In this paper, these overly re-
strictive conditions are not required and the obtained
result is global in nature.
As said, the converse Lyapunov theorem estab-

lished in this paper can be considered as a dis-
crete analogue to the result obtained in [10] for
continuous-time systems. The main idea in the proofs
of the present paper is rooted in the proofs in [10,16],
and the KL-Lemma obtained in [15]. Nevertheless,
there are quite some technical details that need to be
treated di<erently than in the continuous case. Con-
sidering the signiJcant role played by the converse
Lyapunov theorems in the continuous-time case, we
Jnd it necessary and appropriate to present the con-
verse Lyapunov theorem for the discrete-time case.
Furthermore, the results proved in this paper provide
a necessary tool for the study of input-to-state stabil-
ity in [6]. Just as in the continuous case where the
converse Lyapunov theorem in [10] has found wide
applications, it is our belief that the converse Lya-
punov theorem presented in this work will provide
a useful tool for discrete-time systems analysis and
synthesis. See [5,6] for preliminary applications.
In contrast to the work in continuous time where

time invariance is assumed, our converse Lyapunov
theorem is derived for general nonautonomous dis-
crete systems rather than the time invariant case.
Time-varying systems can be often seen in practical
situations when one deals with tracking control prob-
lems. In our context, it is shown that for periodic
discrete systems, the resulted Lyapunov functions are
also time periodic.
In Section 2, we present the above-mentioned con-

verse Lyapunov theorem for robust stability in discrete
time. In Section 3, we discuss the special case when
the invariant set A is compact and the system un-
der study is periodic or time invariant. We show that
when A is compact, the UGAS and the GAS proper-
ties are equivalent for periodic systems and time in-

variant systems. To preserve the smoothness of the
Now, we present the proofs in Section 4 instead of
scattering them with the statements of the results. Our
conclusions are in Section 5.

2. De�nitions and main results

Consider a system of the following general type:

x(k + 1)=f(k; x(k); d(k)); k ∈Z+; (1)

where the states x(·) take values in Rn; and distur-
bances, or time varying parameters, d(·) take values
in � for some subset � of Rm, and where f :Z+ ×
Rn ×� → Rn is continuous. We remark that topolog-
ically Z+ is treated as a subspace of R, so a function
a(·; ·) deJned on J × S for some J ⊆ Z+; S ⊂ Rn is
continuous if and only if a(k; ·) is continuous on S for
each k ∈ J .
We say that system (1) is periodic with period 


if f(k; �; �) is periodic in k with period 
, and (1) is
time invariant if f(k; �; �) is independent of k.
Throughout this work, we assume that the set � is

compact. Let M� be the set of all functions from Z+

to �. We will use x(·; k0; �; d) to denote the solution
of (1) with the initial state x(k0)= � and the external
signal d∈M�. Clearly such a trajectory is uniquely
deJned for all k¿ k0¿ 0. Note also that, for any
k¿ k0; x(k; k0; �; d) is independent of d(j) for j¡k0.

Let A be a nonempty closed subset of Rn. The
set is said to be (forward) invariant if, for each
�∈A; x(k; k0; �; d)∈A for all k¿ k0. Throughout
this work, we denote

|�|A =d(�;A)= inf
�∈A

|�− �|;

where | · | stands for the Euclidean norm in Rn.
Recall that a function � :R¿0 → R¿0 is a

K-function if it is continuous, strictly increasing and
�(0)= 0; it is a K∞-function if it is a K-function
and also �(s) → ∞ as s → ∞; and it is a positive def-
inite function if �(s)¿ 0 for all s¿ 0, and �(0)= 0.
A function � :R¿0 ×R¿0 → R¿0 is a KL-function
if, for each Jxed t¿ 0; the function �(·; t) is a
K-function, and for each Jxed s¿ 0; the function
�(s; ·) is decreasing and �(s; t) → 0 as t → ∞.

2.1. Uniform global asymptotic stability

We Jrst introduce two notions of global stability
for discrete systems as in (1).
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De�nition 2.1. Let A be a closed, not necessarily
compact, invariant set of system (1). The system is
UGAS with respect to A if the following two prop-
erties hold:

1. Uniform stability. There exists a K∞-function
�(·) such that for any �¿ 0,

|x(k; k0; �; d)|A6 �

∀k¿ k0 ∀k0 ∈Z+ ∀d∈M�; (2)

whenever |�|A6 �(�).
2. Uniform global attraction. For any r; �¿ 0; there

exists some T ∈Z+ such that for every d∈M� and
k0 ∈Z+;

|x(k; k0; �; d)|A ¡� (3)

for all k¿ k0 + T whenever |�|A6 r.

As in the continuous-time case, one can prove the
following result. Its proof is analogous with the one
in the continuous-time case and thus is omitted.

Proposition 2.2. System (1) is UGAS with respect
to A if and only if there exists a KL-function �
such that

|x(k; k0; �; d)|A6 �(|�|A; k − k0) ∀k¿ k0 (4)

for all �∈Rn, all k0 ∈Z+; and all d∈M�.

De�nition 2.3. Let A be a closed, not necessarily
compact, invariant set of system (1). The system is
globally exponentially stable (GES) with respect to
A if there exist constants �¿ 0; 0¡�¡ 1 such that

|x(k; k0; �; d)|A6 �|�|A�k−k0 ∀�∈Rn;

k¿ k0 ∀d∈M�:

Remark 2.4. By Proposition 7 in [15], for any
KL-function �, there exist �1; �2 ∈K∞ such that

�(s; r)6 �1(�2(s)e−r) ∀s¿ 0 ∀r¿ 0:

Consequently, system (1) is UGAS with respect to A
if and only if there exist �1; �2 ∈K∞ such that

|x(k; k0; �; d)|A6 �1(�2(|�|A)e−(k−k0)) ∀k¿ k0
(5)

for all �∈Rn, all k0 ∈Z+; and all d∈M�.

Remark 2.5. Suppose system (1) is periodic with pe-
riod 
. By the uniqueness property of solutions, it is
not hard to show that

x(k; k0 + m
; �; d)= x(k − m
; k0; �; dm
) (6)

for all k¿ k0 + m
, all � and all d, where d (k)=
d(k+  ) for any  ∈Z+. In particular, if system (1) is
time invariant, then

x(k; k0; �; d)= x(k − k0; 0; �; dk0 )

∀� ∀k¿ k0 ∀k0 ∈Z+; and ∀d∈M�:

Hence, if a system is periodic with period 
, then it is
UGAS if and only if the estimates as in (2) and (3)
hold for all k0 ∈{0; 1; : : : ; 
 − 1}; and if the system
is time invariant, then it is UGAS if and only if the
estimates as in (2) and (3) hold for k0 = 0.

2.2. Lyapunov functions

In this section, we introduce Lyapunov functions
associated with the UGAS property.

De�nition 2.6. A continuous function V :Z+×Rn →
R¿0 is a Lyapunov function for system (1) with re-
spect to A if

1. there exist two K∞-functions !1 and !2 such that
for any �∈Rn,

!1(|�|A)6V (k; �)6 !2(|�|A) (7)

2. there exists a continuous, positive deJnite function
!3 such that

V (k + 1; f(k; �; �))− V (k; �)6− !3(|�|A)
(8)

for any �∈Rn; k ∈Z+, and any �∈�.

We say that V is periodic with period 
 if V (k; �)
is periodic with period 
 for each �; and V is time
invariant if V (k; �) is independent of k.
A smooth Lyapunov function V (k; �) is one which

is smooth in � on Rn.

It turns out that if a system admits a continuous
Lyapunov function, then it also admits a smooth one.
To be more precise, we have the following:

Lemma 2.7. If there is a continuous Lyapunov func-
tion V with respect toA for (1), then there is also a
smooth one W with respect toA. Furthermore, if V
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is periodic (resp., time invariant), thenW can be cho-
sen to be periodic with the same period (resp., time
invariant).

The next lemma means that one can always assume
that the function !3 as in (8) can be chosen to be of
class K∞. The proofs of both Lemmas 2:7 and 2:8
will be given in Section 4.1.

Lemma 2.8. Assume that system (1) admits a
Lyapunov function V . Then there exists a smooth
K∞-function �; such that; with W = � ◦ V; it holds
that

W (k + 1; f(k; �; �))−W (k; �)6− !(|�|A)

∀�∈Rn ∀�∈� (9)

for some !∈K∞.

2.3. Statement of main results

The following is our main result in this work.

Theorem 1. Consider system (1).

1: The system in UGAS with respect to A if and
only if it admits a smooth Lyapunov function V
with respect to A.

2: A periodic system with period 
 is UGAS with
respect to A if and only if it admits a smooth
periodic Lyapunov function V with respect to A
with the same period 
.

3: A time-invariant system is UGAS with respect to
A if and only if it admits a smooth time invariant
Lyapunov function V with respect to A.

The proof of the theorem will be given in Section
4.3 after we explore more properties related to UGAS
and Lyapunov functions. As a by-product in proving
Theorem 1, we will also establish the following.

Theorem 2. A system of form (1) isGESwith respect
toA if and only if it admits a continuous Lyapunov
function V (k; �) satisfying the inequalities

|�|2A6V (k; �)6c|�|2A

V (k+1; f(k; �; �))−V (k; �)6−|�|2A;

∀�∈Rn ∀�∈�:

(10)

Furthermore; if a periodic; or time invariant; system
is GES; then the Lyapunov function as in (10) can be

chosen to be periodic with the same period or time
invariant respectively.

3. The periodic case with compact invariant sets

In the continuous-time case, it was shown in [16]
that, in the special case when A is compact and when
the system is time invariant, the uniform property in
Property 2 of DeJnition 2.1 can be relaxed. This re-
sult then leads to nontrivial results in the asymptotic
gain characterization of input-to-state stability. In this
section we show that this result still holds for peri-
odic and time invariant systems in the discrete-time
case. The proofs turn out to be far simpler, due to the
fact that in the discrete case, the set M� is compact
with the pointwise convergence topology (cf. Lemma
4.1), while in the continuous case, the corresponding
set of measurable functions taking values in � does
not possess such a compactness property.

De�nition 3.1. System (1) is globally asymptotically
stable (GAS) with respect toA if the following prop-
erties hold:

1. Local uniform stability: for every �¿ 0, there ex-
ists some �¿ 0 such that

|x(k; k0; �; d)|A ¡�

∀k¿ k0 ∀k0 ∈Z+ ∀d∈M�; (11)

whenever |�|A ¡�.
2. Global attraction: for all �∈Rn, all k0 ∈Z+, and

all d∈M�, it holds that

lim
k→∞

|x(k; k0; �; d)|A =0: (12)

Observe that Property 1 in the above deJnition
amounts to requiring that the map � �→ x(k; k0; �; d)
be continuous at �=0 uniformly on all k; k0 ∈Z+ and
all d∈M�. It di<ers from Property 1 of DeJnition
2.1 in that the function �(·) in (2) is required to be of
classK∞. Clearly UGAS implies GAS. A counterex-
ample will be given to show that GAS with respect to
closed sets is in general weaker than UGAS. On the
other hand, when A is compact, the two notions are
indeed equivalent for periodic systems.

Proposition 3.2. LetA be compact. Then a periodic
system; and in particular; a time-invariant system; is
UGAS with respect toA if and only if it is GAS with
respect to A.
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The proof of Proposition 3.2 will be given in Sec-
tion 4.2. Combining Proposition 3.2 with Theorem 1,
we get the following:

Corollary 3.3. Let A be compact. The following
are equivalent for a periodic (resp. time-invariant)
system:

1. it is GAS with respect to A;
2. it is UGAS with respect to A;
3. it admits a smooth periodic (resp. time invariant)
Lyapunov function with respect to A with the
same period.

It can be seen that the compactness property of A
is used nontrivially in the proof. Without the com-
pactness assumption, the result is in general false even
for time invariant systems. For instance, consider the
system

x1(k + 1)=
(
1− 1

1 + |x2(k)|
)

x1(k);

x2(k + 1)= x2(k) + 1:

It is not hard to see that the system is GAS with respect
to the setA= {(x1; x2): x1 = 0}. But the system is not
UGAS with respect to the set A, as the decay rate of
x1 depends on both x1(0) and x2(0).
It can also be seen that Proposition 3.2 in general

fails for a time-varying system, even if the system is
disturbance free. For instance, the system

x(k + 1)= x(k)
(
1− 1

1 + k

)

is GAS, but it is not UGAS.

4. The proofs

In this section, we prove results stated in Sections
2 and 3. Along the way, we also prove some technical
results of independent interest such as a comparison
principle.

4.1. Proofs of Lemmas 2.7 and 2.8

Proof of Lemma 2.7. Suppose system (1) admits a
continuous Lyapunov function V with respect to A
with !i (i=1; 2; 3) as in DeJnition 2.6. Fix k. It then

holds that

V (k + 1; f(k; �; �))6V (k; �)6 !2(|�|A)

∀�∈� ∀�;
and consequently,

|f(k; �; �)|A6 !−1
1 (V (k + 1; f(k; �; �)))

6 !−1
1 (!2(|�|A)): (13)

DeJne �0 :R¿0 → R¿0 by

�0(s) :=min{ 1
2!1(s);

1
2!2(s);

1
4!3(s);

1
4!3(!

−1
2 (!1(s)))}:

Then �(�) := �0(|�|A) is continuous, �(�)= 0 on A
and �(�)¿ 0 for all � �∈ A. According to [2, Theorem
4:8, p. 197]), there is a smooth function Ṽ k deJned
on Rn\A such that

|Ṽ k(�)− V (k; �)|6 �0(|�|A) (14)

for all � �∈ A. In particular, Ṽ k(�)6V (k; �)+�(�) →
0 as |�|A → 0. Extend Ṽ k continuously to Rn by
letting Ṽ k(�)= 0 for �∈A.
DeJneW0 :Z+×Rn byW0(k; �)= Ṽ k(�). Then, for

each k ∈Z+; W0(k; ·) is continuous on Rn, locally Lip-
schitz on Rn\A, and W (k; �)= 0 for �∈A. Further-
more,

|W0(k; �)− V (k; �)|6 �0(|�|A)6 !3(|�|A)=4

∀k ∈Z+ ∀�∈Rn; (15)

and

|W0(k + 1; f(k; �; �))− V (k + 1; f(k; �; �))|

6 �0(|f(k; �; �)|A)6 �0(!−1
1 (!2(|�|A))

6 !3(|�|A)=4 ∀�∈Rn ∀�∈�: (16)

It follows from (14) that

!̂1(|�|A)6W0(k; �)6 !̂2(|�|A) ∀k ∈Z+ ∀�∈Rn;

where !̂1(s)= !1(s)=2 and !̂2(s)= 2!2(s), and from
(15), (16) and (8) that

W0(k + 1; f(k; �; �))−W0(k; �)6− !3(|�|A)=2

∀k ∈Z+ ∀�∈Rn ∀�∈�: (17)

To get a Lyapunov function that is di<erentiable ev-
erywhere, we invoke Lemma 4.3 in [10] which shows
that for the function W0, there exists a K∞-function
� such that the function W := � ◦ W0 is smooth
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everywhere. To be more precise, Lemma 4.3 in [10]
does not exactly apply to the function W0(k; �) whose
Jrst argument does not evolve in R but rather in Z+.
But one can consider a function W̃ 0 :R× Rn deJned
by W̃ 0(t; �)= 0 for t6 0, and

W̃ 0(t; �) = (1− ’(t − k))W0(k; �)

+’(t − k)W0(k + 1; �)

for t ∈ [k; k + 1), where ’ : R → [0; 1] is a smooth
function satisfying ’(t)= 0 for all t6 0 and ’(t)= 1
for all t¿ 1. Note then that W̃ 0 is continuous on
Rn+1, locally Lipschitz on Rn+1\A1, W̃ 0(t; �)= 0 for
all (t; �)∈A1, whereA1 =R×A. Applying Lemma
4.3 in [10], one sees that there exists some �∈K∞
such that the function � ◦ W̃ 0 is smooth everywhere
on Rn+1. Hence, W := � ◦ W0 is smooth everywhere,
and it holds that

!̃1(|�|A)6W (�)6 !̃2(|�|A); (18)

where !̃i(s)= �(!̂i(s)) (i=1; 2). Also note that (17)
gives

�(W0(k + 1; f(k; �; �)))− �(W0(k; �))

6 �
(
W0(k; �)− 1

2!3(|�|A)
)− �(W0(k; �)):

Let �(r)= 0 for all r ¡ 0 and deJne

!4(s)= min
!̂1(s)6r6!̂2(s)

{
�(r)− �

(
r − 1

2!3(s)
)}

:

Then !4 is continuous, positive deJnite, and satisJes

!4(|�|A)6 �(W0(k; �))− �
(
W0(k; �)− 1

2!3(|�|A)
)

∀�∈Rn:

Consequently,

W (k + 1; f(k; �; �))−W (k; �)6− !4(|�|A)

∀�∈Rn ∀�∈�: (19)

This shows thatW is indeed a smooth Lyapunov func-
tion for system (1).
Finally, note that if V is periodic with period 
, then,

when deJning W0, one can let W0(k; �)= Ṽ k(�) for
06 k6 
−1, and letW0(k+m
; �)=W0(k; �) for all
m∈Z+ and all 06 k6 
−1. This way,W0 is periodic
with period 
, and consequently, W is periodic with
period 
. Similarly, if V is time invariant, W0 and W
can be chosen time invariant.

Proof of Lemma 2.8. Assume that system (1) admits
a Lyapunov function V . By Lemma 2.7, one may al-
ways assume that V is smooth. Let !i (i=1; 2; 3) be
as in (7) and (8). One can rewrite (8) as

V (k + 1; f(k; �; �))− V (k; �)

6− !̂3(V (k; �)) ∀�∈Rn ∀�∈�;

where !̂3(s)=min{!3(r): !−1
2 (s)6r6!−1

1 (s)}. Ob-
serve that !̂3 is again continuous and positive def-
inite. Pick any smooth K∞-function �0 such that
�0(s=2)!̂3(s)¿ s for all s¿ 1. DeJne

�(s)= s+
∫ s

0
�0(�) d�:

Then �∈K∞, smooth everywhere, and �′(s)= 1 +
�0(s). Finally, we let W = � ◦ V . Then W is smooth
and satisJes the following:

!̂1(|�|A)6W (k; �)6 !̂2(|�|A) ∀k ∈Z+ ∀�∈R;
where !̂i = �◦!i ∈K∞ (i=1; 2). Belowwewill show
that for all �∈�,

W (k + 1; f(k; �; �))−W (k; �)6− V (k; �)=2

whenever V (�)¿ 1: (20)

Fix any �∈Rn; k ∈Z+, and �∈�. Let v=V (k; �),
and v+ =V (k + 1; f(�; �)). Note that v+6 v. Using
the mean value theorem, one sees

�(v+)− �(v)= �′(v+ + ((v− v+))(v+ − v)

for (∈ [0; 1]. Since �′(s)¿ 1 for all s, it follows that
if v+6 v=2, then

�(v+)− �(v)6− v=2: (21)

Assume now that v+¿ v=2. Then �′(v+ + ((v −
v+))¿ �′(v+)¿ �′(v=2)¿�0(v=2), and hence,

�(v+)− �(v)6 �0(v=2)(v+ − v)

6−�0(v=2)!̂3(v)

6−v whenever v¿ 1: (22)

Combining (21) and (22), one sees that

�(v+)− �(v)6− v=2 whenever v¿ 1:

Also observe that when v6 1,

�(v+)− �(v)

= v+ +
∫ v+

0
�0(s) ds−

(
v+

∫ v

0
�0(s) ds

)

6 v+ − v6− !̂3(v):
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We now let !4 be any K∞-function such that
!4(s)6 !̂3(s) if s6 1, and !4(s)6 s=2 if s¿ 1. Let
!= !4 ◦ !1 ∈K∞. It then follows that

W (k + 1; f(k; �; �))−W (k; �)6− !(|�|A)

for all k ∈Z+, all �∈Rn, and all �∈�.

4.2. Proof of Proposition 3.2

It is trivial that UGAS⇒ GAS. The converse of the
implication follows from the standard fact in analysis
(see, e.g., [14, Theorem 7:23]) that, for a compact set
�, the setM� is compact in the pointwise convergence
topology. A precise statement is as in the following:

Lemma 4.1. For every sequence {dk} of func-
tions in M�; there exist a function d0 ∈M� and
a subsequence {dkl} of {dk} such that for each
j∈Z+; dkl(j) → d0(j) as l → ∞.

Proof of Proposition 3.2. Suppose a periodic system
with period 
 as in (1) in GAS. Let k0 = j∈{0; 1; : : : ;

−1} be given. For each �¿ 0, and each r ¿ 0, we let

Tj(r; �)= inf{t: |x(k; j; �; d)|A6 �

∀k¿ j + t ∀|�|A6 r ∀d∈M�}
(where Tj(r; �)=∞ if the set is empty). Let
�¿ 0 be as in Property 1 of DeJnition 3.1. Then
Tj(r; �)6  := sup{ �;d: |�|A6 r; d∈M�}, where
 �;d = inf{k ∈Z+: |x(k; j; �; d)|A6 �=2}:
By Lemma 4.1, it can be shown that  ¡∞, and hence,
Tj(r; �)¡∞.

For any given r ¿ 0 and �¿ 0, let

Tr;� =max{Tj(r; �): j=0; 1; : : : ; 
− 1}:
By deJnition, (3) holds for all |�|A6 r, all k¿ k0 +
Tr;�, all k0 ∈{0; 1; : : : ; 
− 1} and all d∈M�.
Next, we show that Property 1 (i.e., the global

uniform stability) in DeJnition 2.1 holds. Again, Jx
k0 = j∈{0; 1; : : : ; 
− 1}. For each r ¿ 0, we deJne

’j(r)= sup{|x(k; j; �; d)|A: |�|A6 r; k¿ j;

d∈M�}:
By deJnition of Tr;�, it holds that

’j(r)= sup{|x(k; j; �; d)|A: |�|A6 r;

j6 k6 j + Tr;r ; d∈M�}:
Using again the compactness property of M� (in
pointwise convergence topology), one can show that

’j(r)¡∞ for all r ¿ 0. Furthermore, Property 1 in
the GAS deJnition implies that ’j(r) → 0 as r → 0.
Let ’(0)= 0. Pick any K∞-function ’̃j satisfying
that ’̃j(r)¿’(r) for all r¿ 0. Then it holds that
|x(k; j; �; d)|A6 ’̃j(|�|A) for all k¿ j, all � and all
d. Finally, we let ’(r)=max{’̃j(r) : j=0; 1; : : : ; 
}.
It then holds that

|x(k; k0; �; d)|A6’(|�|A)

for all k¿ k0, all 06 k06 
, all � and all d. By Re-
mark 2.5, the system is UGAS.

4.3. Proof of Theorem 1

To prove Theorem 1, we Jrst discuss some prelim-
inary results.

4.3.1. Continuity properties of trajectories
Consider system (1). It is clear that for each Jxed

k ∈Z+ and each d∈M�, the map x(k; k0; �; d) is con-
tinuous on �. Using the compactness property of M�

with the pointwise topology (cf. Lemma 4.1), one can
get the following stronger uniform continuity property
which is an immediate consequence of the fact that
compositions of uniformly continuous maps are still
uniformly continuous.

Lemma 4.2. Consider system (1).For any k0; T ∈Z+

and any compact subset K of Rn; the map � �→ (x(1+
k0; k0; �; d); x(2 + k0; k0; �; d); : : : ; x(T + k0; k0; �; d))
is uniformly continuous on K and the continuity is
uniform onM�.

Precisely, Lemma 4.2 means that for any compact
set K , any k0; T ∈Z+, and any �¿ 0, there exists
some �¿ 0 such that for any �1; �2 ∈K such that |�1−
�2|¡�,

|x(k; �1; d)− x(k; �2; d)|¡�

∀k =0; 1; : : : ; T; ∀d∈M�: (23)

4.3.2. A comparison principle
In the proof of the suRciency part of Theorem 1,

we need the following comparison lemma.

Lemma 4.3. For each K-function !; there exists a
KL-function �!(s; t) with the following property: if
y : Z+ → [0;∞) is a function satisfying

y(k + 1)− y(k)6− !(y(k)) (24)
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for all 06 k ¡k1 for some k16∞; then

y(k)6 �!(y(0); k) ∀k ¡k1: (25)

Proof. Without loss of generality, one may assume
that !(s)6 s=2 (otherwise one can replace !(s) by
min{!(s); s=2}). Let, for each r¿ 0,

�(r)= max
06s6r

{s− !(s)}:

Then 0¡�(r)¡r for all r ¿ 0, and �(r) is non-
decreasing. It follows from (24) that

y(k + 1)6 �(y(k)); 06 k ¡k1:

Again, without loss of generality, one may assume
that � is of class K, otherwise use (r + �(r))=2 to
replace �(r). According to the standard comparison
principle (see e.g. [7] or [18]), one has y(k)6 z(k)
for all 06 k ¡k0, where z(t) is the solution for the
following initial value problem:

z(k + 1)= �(z(k)); z(0)=y(0); k ∈Z+:

It can be seen that for each k ∈Z+; z(k)= �k(z(0)),
and thus, y(k)6 �k(y(0)), where, for each c∈R;
�k+1(c)= (� ◦ �k)(c) for k¿ 1. Note that for each
c¿ 0; �k(c) → 0 as k → ∞.
To get an estimation as in (25), we let, for each

s∈R¿0 and each r ∈ [k; k + 1); k ∈Z+,

�!(s; r)= (k + 1− r)�k(s) + (r − k)�k+1(s);

where �0(·) denotes the identity function, i.e.,
�0(s)= s for all s∈R¿0. It is not hard to see that
�! ∈KL. Estimation (25) follows from the fact that
�!(s; k)= �k(s) for all k ∈Z+, all s¿ 0.

4.3.3. Proof of Theorem 1: the suAciency
The proof of the suRciency follows the standard

argument, see e.g., [1, Chapter 5]. To make the work
more self-contained, below we provide a treatment for
the case with disturbances.
Assume that system (1) admits a Lyapunov func-

tion, with !i (i=1; 2; 3) as in (7) and (8). By Lemma
2.8, we assume that !3 ∈K∞. Pick any �∈Rn, any
k0 ∈Z+ and any d∈M�. Let x(k)= x(k+k0; k0; �; d),
and let y(k)=V (k + k0; x(k)). Then, it holds that

y(k + 1)− y(k)

=V (k + k0 + 1; x(k + 1))− V (k + k0; x(k))

6− !(V (k + k0; x(k)))=− !(y(k)) ∀k ∈Z+;

where != !3 ◦ !−1
2 . Let �! be the KL-function as in

Lemma 4.3, then

y(k)6 �!(y(0); k)= �!(V (k0; �); k) ∀k ∈Z+:

DeJne �(s; r)= !−1
1 ◦ �!(!2(s); r). Then �∈KL

since both !1; !2 are K∞-functions, and it holds that

|x(k + k0; k0; �; d)|A6 �(|�|A; k) ∀k ∈Z+:

This shows that system (1) is UGAS with respect to
A.

4.3.4. Proof of Theorem 1: the necessity
By Lemma 2.7, it is enough to prove the existence

of a continuous Lyapunov function.
Assume that system (1) is UGAS. By Remark

2.4, there exist �1; �2 ∈K∞ such that (5) holds. Let
!(s)= �−1

1 (s). Then !∈K∞, and

!(|x(k + k0; k0; �; d)|A)6 �2(|�|A)e−k : (26)

DeJne V0 :Z+ × Rn ×M� → R¿0 by

V0(k0; �; d)=
∞∑
k=0

!(|x(k + k0; k0; �; d)|A): (27)

It follows from (26) that

!(|�|A)6 V0(k0; �; d)6
∞∑
k=0

�2(|�|A)e−k

6
e

e− 1
�2(|�|A) ∀d∈M�: (28)

This shows that the series in (27) is convergent, and
the convergence is uniform for �∈K and d∈M�

for any compact set K . Since, for each k and
k0; !(|x(k + k0; k0; ·; d)|A) is continuous uniformly
on d∈M� (cf. Lemma 4.2), it follows that for
each k0 ∈Z+; V0(k0; ·; d) is continuous uniformly on
d∈M�. DeJne V :Z+ × Rn → R¿0 by

V (k0; �)= sup
d∈M�

V0(k0; �; d): (29)

It follows immediately from (28) that

!(|�|A)6V (k0; �)6
e

e− 1
�2(|�|A): (30)

Lemma 4.4. For each k0 ∈Z+; the function V (k0; ·)
is continuous on Rn.

Proof. Let k0 ∈Z+ be given. Fix �∈Rn and let �¿ 0
be given. By the uniform continuity of V0, there exists
some �¿ 0 such that, whenever |�− �|¡�,

|V0(k0; �; d)− V0(k0; �; d)|¡�=2 ∀d∈M�:
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Pick such a point �. Let d0; d1 ∈M� be such that

V (k0; �)6V0(k0; �; d0) + �=2

and

V (k0; �)6V0(k0; �; d1) + �=2:

Then, for any � such that |�− �|¡�,

V (k0; �)− V (k0; �)6 V0(k0; �; d0) + �=2

−V0(k0; �; d0)¡�;

and

V (k0; �)− V (k0; �)6 V0(k0; �; d1) + �=2

−V0(k0; �; d1)¡�:

This shows that V (k0; ·) is continuous everywhere.

In the following we show that V admits a desired
decay estimate as in (8). Pick any k0, any � and any
�∈�. Let �+ denote f(k0; �; �), that is, �+ = x(k0 +
1; k0; �; d), where d is any function in M� such that
d(k0)= �. Then

V (k0 + 1; �+)

= sup
d∈M�

∞∑
k=0

!(|x(k + k0 + 1; k0 + 1; �+; d)|A):

By the uniqueness property of solutions, one can see
that, for any d∈M� such that d(k0)= �, it holds that

x(k + k0 + 1; k0 + 1; �+; d)= x(k + k0 + 1; k0; �; d)

∀k¿ 0:

Hence,

V (k0 + 1; �+)

= sup
d∈M�; d(k0)=�

∞∑
k=0

!(|x(k + k0 + 1; �; d)|A)

= sup
d∈M�; d(k0)=�

∞∑
k=1

!(|x(k + k0 + 1; k0; �; d)|A)

= sup
d∈M�; d(k0)=�

∞∑
k=0

!(|x(k + k0; k0; �; d)|A)

−!(|x(k0; k0; �; d)|A)6V (k0; �)− !(|�|A):

This shows that

V (k0 + 1; f(k0; �; �))− V (k0; �)6− !(|�|A)

for all �∈Rn and for all �∈�.

Finally, if system (1) is periodic with period 
, then
(cf. (6))

x(k + k0 + m
; k0 + m
; �; d)= x(k + k0; k0; dm
)

for all k; k0; m∈Z+, all �, and all d. Thus,

V0(k0 + m
; �; d)

=
∞∑
k=0

!(|x(k + k0 + m
; k0 + m
; �; d)|A)

=
∞∑
k=0

!(|x(k + k0; k0; �; dm
)|A)=V0(k0; �; dm
):

Consequently,

V (k0 + m
; �) = sup
d∈M�

V0(k0; �; dm
)

= sup
d∈M�

V0(k0; �; d)=V (k0; �)

for all k0; m∈Z+ and �∈Rn. Hence, V is periodic
with period 
. Similarly, if the system (1) is time
invariant, then x(k + k0; k0; �; d)= x(k; 0; �; dk0 ), from
which it follows that V is also time invariant.

4.4. Proof of Theorem 2

It can be seen that, in the proof of Theorem 1, the
function ! can be chosen as any K∞-function with
the property that, for some 0¡�¡ 1,

!(|x(k + k0; k0; �; d)|A)6 �2(|�|A)�k

∀k¿ 0; ∀�∈Rn; ∀d∈M�:

In particular, in the case of GES, letting !(s)= s2

will result in a Lyapunov function V with (7) and (8)
strengthened to (10), with c= �2=(1− �2).

5. Conclusions

We have presented a new converse Lyapunov theo-
rem for general nonautonomous discrete systems sub-
ject to disturbances taking values in compact sets.
Special cases such as periodic systems, time-invariant
systems and GES systems are also investigated. We
expect that, like the continuous-time counterpart in
[10], our discrete converse Lyapunov theorem will
Jnd wide applications in the analysis and synthesis of
discrete-time nonlinear systems. Preliminary results in
this direction have been accomplished in [5,6].
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