A Hilbert Space Summary

I will start very briefly, without proofs for the first few results. Generally speaking, if I state here something without a proof it is because I assume that you can prove it on your own. I could be wrong, let me know. I will use the symbol \mathbb{K} to denote the field; that is $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$.

A Hilbert space is an inner product space over \mathbb{K} that is complete in the metric defined by the inner product. In these notes, the symbol H will always denote a Hilbert space. Basic properties of the inner product are

\[
\begin{align*}
|\langle f, g \rangle| & \leq \|f\| \|g\| \quad \text{(Cauchy-Schwarz inequality)} \\
\|f + g\|^2 & = \|f\|^2 + \|g\|^2 + 2\Re \langle f, g \rangle \quad \text{(Minkowski, or: the norm is a norm)} \\
\|f - g\|^2 & = \|f\|^2 + \|g\|^2 - 2\Re \langle f, g \rangle \\
\|f + g\|^2 + \|f - g\|^2 & = 2\|f\|^2 + 2\|g\|^2 \quad \text{(Parallelogram law)}
\end{align*}
\]

As a metric space, it makes sense to talk of open and closed, and compact, subsets of H. And also of convergence.

Proposition 1 Let $\{f_n\}, \{g_n\}$ be sequences in the Hilbert space H converging to f, g, respectively. Then

\[
\begin{align*}
\lim_{n \to \infty} cf_n &= cf \quad \forall c \in \mathbb{K}.
\end{align*}
\]

\[
\begin{align*}
\lim_{n \to \infty} (f_n + g_n) &= f + g.
\end{align*}
\]

\[
\begin{align*}
\lim_{n \to \infty} (f_n, g_n) &= \langle f, g \rangle.
\end{align*}
\]

Proposition 2 Let M be a finite dimensional subspace of H. Then M is closed.

Proof. or rather a sketch of a proof. The quickest way is to use a rather nice result that states that in a finite dimensional vector space (over \mathbb{R} or \mathbb{C}) all norms are equivalent. That means that our M, with the Hilbert space norm, is essentially the same as \mathbb{R}^d or \mathbb{C}^d, with $d = \text{dim } M$. In particular it is complete. So if we have a sequence in M that converges to some point in H, because it converges it is a Cauchy sequence. Being a Cauchy sequence in the complete space M, it must have a limit in M. But in a metric space, a sequence can have only one limit, so the original limit has to be in M. \(\blacksquare\)

The result is not true if the dimension of the subspace is infinite. For example the set

$$M = \{(a_n)_{n=-\infty}^{\infty} : a_n \neq 0 \text{ for only a finite number of } n\}$$

is a subspace; it is not closed. Clearly $M \neq \ell^2(\mathbb{Z})$, but the closure $\overline{M} = \ell^2(\mathbb{Z})$.

Proposition 3 Let M be a subspace of the Hilbert space H. Then \overline{M}, the closure of M in H, is also a subspace.

Let H be a Hilbert space. We say f, g are mutually orthogonal, or that f is orthogonal to g, and write $f \perp g$, iff $\langle f, g \rangle = 0$. If $A \subseteq H$, we define

$$A^\perp = \{f \in H : f \perp g \text{ for all } g \in A\}.$$

We sometimes (or often) will write $f \perp A$ for $f \in A^\perp$.

Proposition 4 Assume $A \subseteq H$. Then A^\perp is a closed subspace of H.

We also have the fairly obvious result that doesn’t need to be graced by calling it a proposition:

\[\|f + g\|^2 = \|f\|^2 + \|g\|^2 \quad \text{if and only if} \quad f \perp g. \]

As a consequence, if \(f_1, \ldots, f_N \) are mutually orthogonal vectors; i.e., \((f_j, f_k) = 0 \) if \(j \neq k \), then

\[\left\| \sum_{j=1}^{N} f_j \right\|^2 = \sum_{j=1}^{N} \|f_j\|^2. \]

I’ll interrupt with a nice little exercise; a picture helps. The result will be used soon.

Exercise 1 Let \(f, g, h \) in \(H \) and assume \(g \neq h \) but \(\|f - g\| = \|f - h\| \). Then

1. \(f - \frac{1}{2}(g + h) \perp g - h \).
2. \(\|f - \frac{1}{2}(g + h)\| < \|f - g\| \).

(In an isosceles triangle, the median to the base is perpendicular to the base and shorter than the two equal sides.)

A subset \(E \) of the Hilbert space \(H \) is said to be an **orthonormal set** iff all elements of \(E \) have norm 1, and any two are mutually orthogonal:

\[(f, g) = \begin{cases} 0, & \text{if } f \neq g, \\ 1, & \text{if } f = g. \end{cases} \]

Theorem 5 Let \(C \) be a closed convex non-empty subset of \(H \). If \(f \in H \) there exists a unique \(g \in C \) such that \(\|f - g\| = \text{dist}(f, C) \).

Proof. Let \(f \in H \) and let \(d = \text{dist}(f, C) \); since \(C \neq \emptyset \) it follows that \(d \geq 0 \). There is a sequence \(\{g_n\} \) in \(C \) such that

\[\lim_{n \to \infty} \|f - g_n\| = d. \]

The trick now is to use the following identity:

\[\|g_n - g_m\|^2 = 2\|f - g_n\|^2 + 4\|f - g_m\|^2 - 4\|f - \frac{1}{2}(g_n + g_m)\|^2. \]

To verify it more or less fast notice that by the parallelogram law

\[
4\|f - \frac{1}{2}(g_n + g_m)\|^2 = 4\|\frac{1}{2}(f - g_n) + \frac{1}{2}(f - g_m)\|^2 = \|(f - g_n) + (f - g_m)\|^2 \\
= \|f - g_n\|^2 + \|f - g_m\|^2 - \|(f - g_n) - (f - g_m)\|^2 \\
= 2\|f - g_n\|^2 + 2\|f - g_m\|^2 - \|g_n - g_m\|^2.
\]

Because \(C \) is convex, \(\frac{1}{2}(g_n + g_m) \in C \) and it follows that \(\|f - \frac{1}{2}(g_n + g_m)\|^2 \geq d^2 \). The tricky identity thus implies

\[\|g_n - g_m\|^2 \leq 2\|f - g_n\|^2 + 2\|f - g_m\|^2 - 4d^2, \]

from which we get \(\limsup_{m,n \to \infty} \|g_n - g_m\|^2 \leq 2d^2 + 2d^2 - 4d^2 = 0 \); since \(\|g_n - g_m\|^2 \geq 0 \) for all \(m, n \), we conclude \(\lim_{m,n \to \infty} \|g_n - g_m\|^2 = 0 \); that is, the sequence \(\{g_n\} \) is a Cauchy sequence, hence converges. If \(g = \lim_{n \to \infty} g_n \) we gave \(g \in C \) since \(C \) is closed, and \(\|f - g\| = \text{dist}(f, C) \).

Uniqueness is an immediate consequence of Exercise 1.

The main application for us is to the case in which the closed convex subset is a closed subspace \(M \).

Definition 1 Assume \(M \) is a closed subspace of \(H \). We define a map \(P_M : H \to H \) defining \(g = P_M f \) as the unique element \(g \in M \) such that \(\|f - g\| = \text{dist}(f, M) \).
Theorem 6 Assume M is a closed subspace of H. The following properties hold.

1. $P_M(H) = M$ and $P_M f = f$ for all $f \in M$.
2. $g = P_M f$ if and only if $g \in M$ and $f - g \in M^\perp$.
3. $P_M : H \to M$ is linear.

Proof. Property 1. is obvious from the definition. For 2., assume first that $g = P_M f$. By construction $g \in M$, so we must prove $(f - g, h) = 0$ for all $h \in M$. Letting $h \in M$, consider the function

$$
\phi(t) = \|f - (g + th)\|^2
$$

for $t \in \mathbb{R}$. Because $g + th \in M$, this function has a minimum value for $t = 0$, thus

$$
0 = \phi'(0) = \frac{d}{dt}\|f - g - th\|^2\bigg|_{t=0} = \frac{d}{dt}\left(\|f - g\|^2 - 2t\text{Re}(f - g, h) + t^2\|h\|^2\right)\bigg|_{t=0} = -2\text{Re}(f - g, h).
$$

Thus $\text{Re} (f - g, h) = 0$; all that is needed if the space is real. If $\mathbb{K} = \mathbb{C}$, we repeat the argument with h replaced by ih to get $0 = \text{Re} (f - g, ih) = \text{Im}(f - g, h)$.

Conversely, assume $f \in H, g \in M$ and $f - g \perp M$. We then have for all $h \in M$ (since $g - h \in M$ so $f - g \perp g - h$)

$$
\|f - h\|^2 = \|f - g + g - h\|^2 = \|f - g\|^2 + \|g - h\|^2 > \|f - Pf\|^2
$$

except if $h = g$. Because by Theorem 5 the minimum is realized, it must be g, so $g = P_M f$. This proves 2.

To see that P_M is linear, let $f, g \in H, a, b \in \mathbb{K}$. By the direct part of 2, $f - PMf, g - PMg \in M^\perp$. But then

$$
af + bg - (aP_M f + bP_M g) = a(f - P_M f) + b(g - P_M g) \in M^\perp,
$$

implying that $aP_M f + bP_M g = PM(af + bg)$. □

The following result is a very basic important Hilbert space result. Its proof is now quite easy.

Theorem 7 Let M be a closed subspace of H. Then $H = M \oplus M^\perp$. In other words, every element f of H can be written uniquely in the form $f = g + h$, where $g \in M$, $h \in M^\perp$.

Proof. Let $P = P_M$. If $f \in H$ we thus have $f = g + h$ where $g = Pf \in M$, and $h = (I - P)f = f - Pf \in M^\perp$. This implies that $H = M + M^\perp$. Since $M \cap M^\perp = \{0\}$ is clear ($f \in M \cap M^\perp \Rightarrow (f, F) = 0 \Rightarrow f = 0$), this proves $H = M \oplus M^\perp$. □

Certain immediate useful consequences of all this are summarized in the following proposition. If $A \subseteq H$ we define $A^\perp = (A^\perp)^\perp$.

Proposition 8

1. If M is a closed subspace of H, then $M^\perp \perp = M$
2. If $A \subseteq H$, then $A^\perp \perp$ is the smallest closed subspace of H containing A.
3. A subset A of H spans a dense subspace of H if and only if $f \perp A$ implies that $f = 0$.
4. $P_{M^\perp} = I - P_M$

Proof.

1. There could be a shorter proof of this point. It being clear that $M \subseteq M^\perp \perp$, let $f \in M^\perp \perp$; we have to see $f \in M$. By Theorem 7, we can write $f = g + h$, with $g \in M, h \in M^\perp$. Then $(f, h) = 0$ and

$$
\|f\|^2 = (f, g) + (f, h) = (f, g).
$$

By Cauchy-Schwarz,

$$
\|f\|^2 = |(f, g)| \leq \|f\|\|g\|.
$$

This implies that $\|f\| \leq \|g\|$ (Trivial if $\|f\| = 0$; otherwise, cancel). Then, because $(g, h) = 0$,

$$
\|g\|^2 \geq \|f\|^2 = \|g\|^2 + \|h\|^2
$$

implying $\|h\| = 0$. Thus $f = g \in M$. □
2. Let M be the smallest closed subspace containing A. In other words, M is the closure of M_0, where M_0 is the set (space) of all finite combinations of elements of A. It is clear that $f \perp A$ implies $f \perp M_0$; hence also $f \perp M$. That is $A^\perp = M^\perp$ thus $A^{\perp \perp} = M^{\perp \perp} = M$.

3. Let D be the subspace spanned by A. As mentioned in the proof of the previous point, A^\perp is the same as D^\perp so that A spans a dense subspace if and only if $D = H$, which is if and only if $D^\perp = H^\perp = \{0\}$. We are using here implicitly that the map $M \mapsto M^\perp$ is bijective for closed subspaces; clear since by point 1. it is its own inverse.

4. Let $f \in H$, $g = (I - P_M)f \in M^\perp$ and $P_M f = f - g \in M = (M^\perp)^\perp$. Thus $g = P_M f$.

There are several equivalent ways of defining an orthonormal basis. Our text uses the one that could be easiest to verify, so I’ll stick with it: An orthonormal subset \mathcal{E} of H is an orthonormal basis of H iff $f \in H$, $f \perp \mathcal{E}$ implies $f = 0$. Equivalently if $\mathcal{E}^\perp = \{0\}$. Also equivalently, if \mathcal{E} is a maximal orthonormal set; there is no orthonormal set properly containing \mathcal{E}. An orthonormal subset of H is frequently written as an indexed set, say $\mathcal{E} = \{e_\alpha\}_{\alpha \in A}$ and called an orthonormal system.

I will simplify things from now on by following our textbook’s lead and assume that H is separable. The simplification is actually not major. One can see that in this case every orthonormal system has to be countable.

Proposition 9 Let $\{e_j\}_{j=1}^N$ be a finite orthonormal set. For each $f \in H$:

1. (Bessel) $\sum_{k=1}^N |(f, e_k)|^2 \leq \|f\|^2$.

2. Of all possible choices of coefficients $a_1, \ldots, a_N \in \mathbb{K}$ the one that minimizes $\|f - \sum_{k=1}^N a_k e_k\|$ is $a_k = \langle f, e_k \rangle$, $k = 1, \ldots, N$. In other words $\left\| f - \sum_{k=1}^N \langle f, e_k \rangle e_k \right\| \leq \left\| f - \sum_{k=1}^N a_k e_k \right\|$ for all $a_1, \ldots, a_N \in \mathbb{K}$.

Proof. For Bessel’s inequality, we have that

$$0 \leq \left\| f - \sum_{k=1}^N \langle f, e_k \rangle e_k \right\|^2 = \|f\|^2 - 2\Re \left(f, \sum_{k=1}^N \langle f, e_k \rangle e_k \right) + \left\| \sum_{k=1}^N \langle f, e_k \rangle e_k \right\|^2$$

$$= \|f\|^2 - 2\Re \sum_{k=1}^N \langle f, e_k \rangle \langle f, e_k \rangle + \sum_{k=1}^N \|\langle f, e_k \rangle\|^2$$

$$= \|f\|^2 - 2 \sum_{k=1}^N |\langle f, e_k \rangle|^2 + \sum_{k=1}^N |\langle f, e_k \rangle|^2 = \|f\|^2 - \sum_{k=1}^N |\langle f, e_k \rangle|^2$$

Bessel follows. For the minimization property, I will go a bit faster. Let $a_1, \ldots, a_N \in \mathbb{K}$. Notice first that

$$\sum_{k=1}^N |a_k - \langle f, e_k \rangle|^2 = \sum_{k=1}^N |a_k|^2 + \sum_{k=1}^N |\langle f, e_k \rangle|^2 - 2\Re \sum_{k=1}^N a_k \langle f, e_k \rangle.$$

or

$$2\Re \sum_{k=1}^N a_k \langle f, e_k \rangle = -\sum_{k=1}^N |a_k - \langle f, e_k \rangle|^2 + \sum_{k=1}^N |a_k|^2 + \sum_{k=1}^N |\langle f, e_k \rangle|^2.$$
Thus
\[
\left\| f - \sum_{k=1}^{N} a_k e_k \right\|^2 = \|f\|^2 - 2\text{Re} \sum_{k=1}^{N} a_k (f, e_k) + \sum_{k=1}^{N} |a_k|^2 \\
= \|f\|^2 - \left(- \sum_{k=1}^{N} |a_k - (f, e_k)|^2 + \sum_{k=1}^{N} |a_k|^2 + \sum_{k=1}^{N} |(f, e_k)|^2 \right) + \sum_{k=1}^{N} |a_k|^2 \\
= \|f\|^2 + \sum_{k=1}^{N} |a_k - (f, e_k)|^2 + \sum_{k=1}^{N} |(f, e_k)|^2.
\]

Clearly, the last expression is smallest possible when \(a_k = (f, e_k)\) for \(k = 1, \ldots, N\).

From now on we will mostly assume that our orthonormal systems are infinite countable. As a corollary of Bessel’s inequality we get

Corollary 10 Let \(E = \{e_k\}_{k=1}^{\infty}\) be an orthonormal system. For every \(f \in H\), we have

\[
\sum_{k=1}^{\infty} |(f, e_k)|^2 \leq \|f\|^2 < \infty.
\]

We now can prove all the equivalences of being an orthonormal basis.

Theorem 11 Let \(E = \{e_k\}_{k \in \mathbb{N}}\) be an orthonormal system. The following statements are equivalent.

1. \(E\) is an orthonormal basis.

2. \(E\) spans a dense subset; that is, if we define \(M\) to be the set of all finite linear combinations of elements of \(E\); namely,

\[
M = \{ \sum_{k=1}^{N} c_k e_k : N \in \mathbb{N}, c_1, \ldots, c_N \in \mathbb{K} \},
\]

then \(M\) is dense in \(H\).

3. For each \(f \in H\),

\[
f = \sum_{k=1}^{\infty} (f, e_k) e_k.
\]

That is, \(\lim_{N \to \infty} \left\| f - \sum_{k=1}^{N} (f, e_k) e_k \right\| = 0\).

4. Parseval holds for all elements of \(H\); that is

\[
\|f\|^2 = \sum_{k=1}^{\infty} |(f, e_k)|^2
\]

for all \(f \in H\).

Proof. 1. \(\Rightarrow\) 2. Assume 1. so \(E^\perp = \{0\}\). That \(E\) spans a dense subspace is immediate from Proposition 8.

2. \(\Rightarrow\) 3. Assume 2. Let \(f \in H\). Let \(\epsilon > 0\). Since \(\sum_{k} |(f, e_k)|^2 < \infty\) by Corollary 10, there is \(N\) such that

\[
\sum_{k=N+1}^{\infty} |(f, e_k)|^2 < \epsilon^2 / 4.
\]

By assumption 2., there is a finite linear combination of elements of \(E\) at distance \(< \epsilon/2\) from \(f\); by adding zero coefficients if needed we may assume it is of the form \(\sum_{k=1}^{M} a_k e_k\), with \(a_1, \ldots, a_M \in \mathbb{K}\); that is,

\[
\|f - \sum_{k=1}^{M} a_k e_k\| < \epsilon / 2.
\]
Adding even more 0 coefficients, we can assume $M \geq N$. By Proposition 9, part 2, we then have

$$\|f - \sum_{k=1}^{M} (f, e_k)e_k\| < \epsilon/2.$$

It follows that if $n \geq \max(N, M)$,

$$\|f - \sum_{k=1}^{n} (f, e_k)e_k\| \leq \|f - \sum_{k=1}^{M} (f, e_k)e_k\| + \|\sum_{k=M+1}^{n} (f, e_k)e_k\| < \epsilon/2 + \left(\sum_{k=M+1}^{n} \|f, e_k\|^2\right)^{1/2} = \epsilon/2 + \epsilon = \epsilon.$$

3. \Rightarrow 4. If $f \in H$, then by 3., $f = \lim_{N \to \infty} \sum_{k=1}^{N} (f, e_k)e_k$ so that

$$\|f\|^2 = (f, f) = \lim_{N \to \infty} \sum_{k=1}^{N} (f, e_k)e_k = \lim_{N \to \infty} \sum_{k=1}^{N} \|f, e_k\|^2 = \sum_{k=1}^{\infty} \|f, e_k\|^2.$$

3. \Rightarrow 1. is immediate.

Because we assume H is separable, it is not to hard to see it has a countable orthonormal basis. In fact, let D be a dense subset. Let’s order the elements of D as a sequence: $D = \{f_1, f_2, \ldots\}$. Construct a subsequence $\{f_{n_k}\}$ as follows. f_{n_1} is the first non-zero element of the sequence; if there is none then $H = \{0\}$ and we are done. Assume now f_{n_1}, \ldots, f_{n_k} selected for some $k \geq 1$; $1 \leq n_1 < \cdots < n_k$. If these vectors span H, we are done. Stop. If not, let n_{k+1} be the first integer $> n_k$ such that $f_{n_{k+1}}$ is linearly independent from f_{n_1}, \ldots, f_{n_k}. This process produces a finite or infinite sequence $\{f_{n_k}\}_{k \in A}$, where $A = \mathbb{N}$ or $A = \{1, \ldots, m\}$. The construction guarantees that it is a linearly independent set; all finite combinations of its elements are non-zero, except if all coefficients are zero. It also guarantees that it spans a dense subspace because everything originally in D is in the span. In fact, if $f \in D$ then $f = f_n$ for some $n \in \mathbb{N}$. If $n = n_k$ for some k, then it is obviously in the span of the subsequence (being in the subsequence). If not, there is a last $n_k < n$. Since n is not n_{k+1}, this means that f_n is a linear combination of f_{n_1}, \ldots, f_{n_k}.

The next step is to apply the Gram-Schmidt procedure. In other words, we define e_1, e_2, \ldots by $e_1 = \frac{1}{\|f_{n_1}\|}f_{n_1}$ and, assuming e_1, \ldots, e_k selected (and $k < m$ in the finite case), we define first

$$g_{k+1} = f_{n_{k+1}} - \sum_{j=1}^{k} (f_{n_{k+1}}, e_j)e_j;$$

verify that $g_{k+1} \perp \{e_1, \ldots, e_k\}$; $g_{k+1} \neq 0$ and finally set $e_{k+1} = \frac{1}{\|g_{k+1}\|}g_{k+1}$. We now have an orthonormal system $\{e_k\}_{k \in A}$ and because the span of $\{e_1, \ldots, e_j\}$ is the same as the span of $\{f_1, \ldots, f_j\}$ for all j, the system spans the same subspace as $\{f_{n_k}\}_{k \in A}$; that is, it spans a dense subspace. By Theorem 11 we have an orthonormal basis, also known as mons*.

If V, W are finite dimensional Hilbert spaces, all linear mappings from V to W are continuous. This is false once infinite dimensions are allowed. Here is a simple result that is actually valid for all normed spaces (no completeness needed); I include a proof.

Theorem 12 Let H, K be Hilbert spaces (over the same field) and assume that $T : H \to K$ is linear. The following properties are equivalent:

1. T is continuous.
2. T is continuous at 0.

*Maximal orthonormal system.
3. T is bounded, meaning there exists a constant $C \geq 0$ such that $\|Tf\| \leq C\|f\|$ for all $f \in H$. (We are using the same symbol for the norm in H as in K. With a bit of luck this won’t cause any confusion.)

Proof. 1 \Rightarrow 2 is obvious.

To prove 2 \Rightarrow 3, assume 2. Taking the proverbial ϵ in the definition of continuity equal to 1, we see that there is $\eta > 0$ such that $\|f\| \leq \eta$ implies $\|Tf\| \leq 1$. Assume now $f \in H$, $f \neq 0$ Then $g = \frac{\eta}{\|f\|}f$ satisfies $\|g\| = \eta \leq \eta$; thus $\|Tg\| \leq 1$, which works out to $\|Tf\| \leq \frac{1}{\eta} \|f\|$ Taking $C = 1/\eta$ we proved $\|Tf\| \leq C\|f\|$ for all $f \in H$, $f \neq 0$; it being trivially true if $f = 0$, we proved it for all $f \in H$, proving 3.

To prove 3 \Rightarrow 1, assume 3. Let $f \in H$. Let $\epsilon > 0$ be given. Let $\delta = \epsilon/C$, where C is the constant of the statement of 3. If $\|g - f\| < \delta$, then

$$\|Tg - Tf\| = \|T(g - f)\| \leq C\|g - f\| < C\delta = \epsilon.$$

Continuity follows.

If $T : H_1 \to H_2$ is linear and bounded, one defines the norm of T by

$$\|T\| = \inf \{C : \|Tf\| \leq C\|f\| \ f \in H_1\}.$$

It is easy to see that the set of all bounded operators from H_1 to H_2, sometimes denoted by $B(H_1, H_2)$ is vector space over K with the obvious operations and $\| \cdot \|$ is a norm, meaning

1. $\|T\|g_0 = 0$ for all $T \in B(H_1, H_2)$, and $\|T\| = 0$ if and only if T is the zero operator.
2. $\|cT\| = |c|\|T\|$ for all $c \in K$, $T \in B(H_1, H_2)$.
3. $\|T + S\| \leq \|T\| + \|S\|$ for all $T, S \in B(H_1, H_2)$.

Assume now $g \in H$. We can define a linear map ℓ_g from $H \to K$ by $\ell_g(f) = \langle f, g \rangle$. This map is bounded;

$$\|\ell_g(f)\| = \|\langle f, g \rangle\| \leq \|g\| \|f\|.$$

The inequality proves $\|\ell_g\| \leq \|g\|$; because $\|\ell_g(g)\| = \|g\|^2$, it follows that $\|\ell_g\| = \|g\|$. The Riesz representation theorem states that these are the only bounded linear functionals (i.e., maps to the field) in H:

Theorem 13 Riesz Representation Assume $\ell : H \to K$ is a bounded linear functional; that is, ℓ is linear and there exists a constant C such that $|\ell(f)| \leq C\|f\|$ for all $f \in H$. There exists then a unique $g \in H$ such that $\ell = \ell_g$; i.e., $\ell(f) = \langle f, g \rangle$ for all $f \in H$.

Proof. If $\ell = 0$ (maps everything to 0 in K), then $g = 0$, and we are done. So assume $g \neq 0$ and let

$$M = \ker \ell = \{f \in H : \ell(f) = 0\}.$$

Because $\ell \neq 0$, $M \neq H$, hence $\perp \neq \{0\}$. There is thus $g_0 \in M^\perp$ such that $c = \ell(g_0) \neq 0$. Let $f \in H$, then

$$\ell(f - \frac{\ell(f)}{c} g_0) = \ell(f) - \frac{\ell(f)}{c} \ell(g_0) = \ell(f) - \ell(f) = 0,$$

so that $h = f - \frac{\ell(f)}{c} g_0 \in M$ and $f = h + \frac{\ell(f)}{c} g_0$ must be the decomposition of f into an element of M plus one of M^\perp. Since $(h, g_0) = 0$ we get taking inner product with g_0 that

$$0 = \langle f, g_0 \rangle - \frac{\ell(f)}{c} \langle g_0, g_0 \rangle,$$

which can be solved to $\ell(f) = \langle f, g \rangle$ where $g = \frac{1}{c \|g_0\|^2} g_0$. ■
Appendix

If H is separable, then every orthonormal system is countable.

Proof. Assume $E = \{e_\alpha \}_{\alpha \in A}$ is an orthonormal system in the separable Hilbert space H. Let D be a dense subset. For each $f \in D$ let $A_f = \{ \alpha \in A : (f, e_\alpha) \neq 0 \}$. The set of indices A_f is countable. In fact, one can prove essentially as done in the text or the notes that

$$\sum_{\alpha \in A} |(f, e_\alpha)|^2 \leq \|f\|^2 < \infty,$$

and this implies that the set of non-zero terms in that sum is countable. Let $B = \bigcup_{f \in D} A_f$. Then B is countable. We claim $B = A$. In fact, let $\alpha \notin B$. Then $(f, e_\alpha) = 0$ for all $f \in D$. By the density of D there is a sequence $\{f_n\}$ converging to e_α. But then

$$1 = (e_\alpha, e_\alpha) = \lim_{n \to \infty} (f_n, e_\alpha) = 0,$$

a clear contradiction. We are done. \blacksquare