Isolated Singularities.

These notes supplement the material at the beginning of Chapter 3 of Stein-Shakarchi.

I begin with our (slightly stronger) version of Riemann’s Theorem on removable singularities, that appears as Theorem 3.1 in Stein-Shakarchi. Before stating and proving our version, I remind you of a result from the notes titled “A general version of Cauchy’s Theorem. Runge’s Theorem.” Because we may have occasion to use it again in the future (the only time one can use something again), I’ll state it as a Lemma, and add the proof.

Lemma 1 Let $z_0 \in \mathbb{C}$ and let $\Omega = \{ z \in \mathbb{C} : r_2 < \lvert z - z_0 \rvert < R \}$ be an annulus, $0 \leq r < R$ and assume $f : \Omega \to \mathbb{C}$ is holomorphic. Let $r < r_1 < r_2 < R$. Then

$$f(z) = \frac{1}{2\pi i} \int_{|z-z_0|=r_2} \frac{f(\zeta)}{\zeta-z} \, d\zeta - \frac{1}{2\pi i} \int_{|z-z_0|=r_1} \frac{f(\zeta)}{\zeta-z} \, d\zeta$$

for $r_1 < |z - z_0| < r_2$.

Proof. We let γ_2 be the positively oriented circle of radius r_2 and γ_1 the negatively oriented circle of radius r_1, both centered at z_0 and consider the cycle $\Gamma = \gamma_1 + \gamma_2$. Because

$$W_{\gamma_1}(z) = W_{\gamma_2}(z) = 0 \quad \text{if} \quad |z - z_0| \geq R; \quad W_{\gamma_1}(z) = W_{\gamma_2}(z) = 1 \quad \text{if} \quad \lvert z - z_0 \rvert < r,$$

it follows that $W_\Gamma(z) = W_{\gamma_1 + \gamma_2}(z) = 0$ for all $z \notin \Omega$. Moreover, because

$$W_{\gamma_1}(z) = 0, \ W_{\gamma_2}(z) = 1 \quad \text{if} \quad r_1 < |z - z_0| < r_2,$$

it follows that $W_\Gamma(z) = 1$ for all z with $r_1 < |z - z_0| < r_2$. By (2) of Theorem 7 of the aforementioned “A general version...” notes,

$$f(z) = \frac{1}{2\pi i} \int_\Gamma \frac{f(\zeta)}{\zeta-z} \, d\zeta = \frac{1}{2\pi i} \int_{|z-z_0|=r_2} \frac{f(\zeta)}{\zeta-z} \, d\zeta - \frac{1}{2\pi i} \int_{|z-z_0|=r_1} \frac{f(\zeta)}{\zeta-z} \, d\zeta$$

for $r_2 < |z| < r_1$, as desired.

Here is our version of Riemann’s theorem.

Theorem 2 Assume Ω is open in \mathbb{C}, let $z_0 \in \Omega$ and assume $f : \Omega \setminus \{z_0 \} \to \mathbb{C}$ is holomorphic. If $\lim_{z \to z_0} (z-z_0) f(z) = 0$, then f extends to a function also holomorphic at z_0. To be precise, $\lim_{z \to z_0} f(z)$ exists and defining f at z_0 to be that limit, f is holomorphic at z_0.

Proof. Select $R > 0$ so that $D_R(z_0) \subset \Omega$ and apply Lemma 1 with $r = 0$. Since we don’t need any additional symbols for 0, we are free to use r with a different meaning. Assume $0 < \epsilon < r < R$. By Lemma 1 we have

$$f(z) = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(\zeta)}{\zeta-z} \, d\zeta - \frac{1}{2\pi i} \int_{|z-z_0|=\epsilon} \frac{f(\zeta)}{\zeta-z} \, d\zeta$$

for $\epsilon < |z - z_0| < r$. We now fix z such that $0 < |z - z_0| < R$ and take r so $|z - z_0| < r < R$, $\epsilon > 0$ such that $\epsilon < \frac{1}{2} |z - z_0| < |z - z_0|$. Then (1) is valid. Another consequence of this assumption on ϵ is that if $|\zeta - z_0| = \epsilon$, then

$$|\zeta - z| = |z - \zeta| = |(z - z_0) - (z_0 - \zeta)| \geq |z - z_0| - |z_0 - \zeta| = \lvert z-z_0 \rvert - \epsilon \geq \frac{1}{2} \lvert z - z_0 \rvert.$$

By our hypothesis on f, given $\eta > 0$, there is $\delta > 0$ such that

$$|f(\zeta)| \leq \frac{\eta}{|\zeta - z_0|}.$$
if $0 < |\zeta - z_0| < \delta$. Assuming now $\epsilon < \delta$ (in addition to $\epsilon < \frac{1}{2}|z - z_0|$) we have if $|\zeta - z_0| = \epsilon$,
\[
\left| \frac{f(\zeta)}{\zeta - z} \right| = \frac{|f(\zeta)|}{|\zeta - z|} \leq \frac{\eta}{2|z - z_0|} = \frac{2\eta}{\epsilon|z - z_0|}.
\]
Thus (with γ_ϵ denoting the circle of radius ϵ)
\[
\left| \frac{1}{2\pi i} \int_{|\zeta - z_0| = \epsilon} \frac{f(\zeta)}{\zeta - z} d\zeta \right| \leq \frac{2\eta}{2\pi \epsilon|z - z_0|} \Lambda(\gamma_\epsilon) = \frac{2\eta}{2\pi \epsilon|z - z_0|} 2\pi \epsilon = \frac{2\eta}{|z - z_0|} \to 0
\]
as $\epsilon \to 0+$. Since we can take $\epsilon > 0$ arbitrarily small, we can let $\epsilon \to 0+$ in (2) to conclude that
\[
f(z) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} d\zeta
\]
if $0 < |z - z_0| < r$. By Theorem 5.4 in Chapter 2 of Stein-Shakarchi, the map
\[
z \mapsto \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} d\zeta
\]
is holomorphic in all of $D_r(z_0)$; since it coincides with f in $D'_r(z_0)$, it extends f holomorphically to all of the disc. That is, defining
\[
f(z_0) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z_0} d\zeta,
\]
it follows that f is holomorphic at z_0.

Concerning isolated singularities here are a few results, all of them to be proved in class (and in the text, though perhaps not in the same order).

We assume $z_0 \in \mathbb{C}$ and there is $r > 0$ such that $f : D'_r(z_0) \to \mathbb{C}$ is holomorphic.

• One and precisely one of the following three possibilities occurs.

1. $\lim_{z \to z_0} f(z) \in \mathbb{C}$ exists. In this case we will always assume that f is defined at z_0 by $f(z_0) = \lim_{z \to z_0} f(z)$ and by Theorem 2 f is holomorphic at z_0.

2. $\lim_{z \to z_0} |f(z)| = \infty$. In this case we say f has a pole at z_0.

3. None of the above. However, none of the above is also equivalent to these three other conditions:

 (a) $f(z)$ does not remain bounded near z_0, however, $\lim_{z \to z_0} |f(z)| = \infty$ is false. (It stays bounded by some approaches, not by others).

 (b) For each $k \in \mathbb{N}$, it is false that $\lim_{z \to z_0} |z - z_0|^k |f(z)| = 0$. That is, $\limsup_{z \to z_0} |z - z_0|^k |f(z)| > 0$ for all $k \in \mathbb{N}$.

 (c) For each $k \in \mathbb{N}$, it is false that $\lim_{z \to z_0} |z - z_0|^{-k} |f(z)| = \infty$. That is, $\liminf_{z \to z_0} |z - z_0|^{-k} |f(z)| < \infty$ for all $k \in \mathbb{N}$.

We call such an isolated singularity an essential singularity. The equivalence of these three conditions and their equivalence with “none of the above” should be fairly self-evident; given Theorem 2.

• We say f has a zero at z_0 if, what else?, $f(z_0) = \lim_{z \to z_0} f(z) = 0$. In this case, of course, f is holomorphic at z_0 and therefore has a series expansion converging in all of $D_r(z_0)$; that is $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ for $z \in D_r(z_0)$. The fact that $f(z_0) = 0$ is equivalent to $a_0 = 0$. Assuming f is not identically zero in $D_r(z_0)$, there is $k \geq 1$ with $a_k \neq 0$. We then say that f has a zero of order k at z_0. We can then write
\[
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = (z - z_0)^k \sum_{n=0}^{\infty} a_{n+k} (z - z_0)^n.
\]
The series $\sum_{n=0}^{\infty} a_{n+k} (z - z_0)^n$ has the same radius of convergence as the series for f, thus defines a holomorphic function $g(z) = \sum_{n=0}^{\infty} a_{n+k} (z - z_0)^n$ in $D_r(z_0)$; $g(z_0) = a_k \neq 0$. This proves most of the following simple Lemma.
The function f has a zero of order $k \in \mathbb{N}$ at z_0 if and only if there exists a function g holomorphic at z_0 such that $g(z_0) \neq 0$, and $f(z) = (z - z_0)^k g(z)$.

- If f has a zero of order k at z_0, then there has to be some deleted neighborhood of z_0 where $f(z) \neq 0$ and $1/f$ will be holomorphic in that neighborhood. Clearly, the fact that $\lim_{z \to z_0} f(z) = 0$ implies that $\lim_{z \to z_0} |1/f(z)| = \infty$, thus $1/f$ has a pole at z_0. Conversely, if f has a pole at z_0, then f cannot possibly be zero if we are close enough to z_0, so $1/f$ is holomorphic in a deleted neighborhood of z_0. But we will have $\lim_{z \to z_0} 1/f(z) = 0$, so that $1/f$ extends to holomorphic at z_0 and has a zero at z_0. This zero has an order, say k. We say that f has a pole of order k at z_0. To summarize, f has a pole of order k at z_0 if and only if $1/f$ has a zero of order k at z_0. In this case we can write $1/f(z) = (z - z_0)^k g(z)$ with $g(z_0) \neq 0$. Then $h = 1/g$ is holomorphic and non-zero at z_0. We get the following counterpart to Lemma 3

Lemma 4 The function f has a pole of order $k \in \mathbb{N}$ at z_0 if and only if there exists a function h holomorphic at z_0 such that $h(z_0) \neq 0$, and $f(z) = (z - z_0)^{-k} h(z)$.

- A slightly different characterization of poles is given by the next lemma.

Lemma 5 The function f has a pole of order k at z_0 if and only if there exist complex numbers $a_1, a_{-2}, \ldots, a_{-k}$ such that $a_{-k} \neq 0$ and

$$f(z) = \frac{a_{-k}}{(z - z_0)^k} + \cdots + \frac{a_{-1}}{z - z_0}$$

is holomorphic at z_0 (i.e., extends continuously to a holomorphic function at z_0).

Proof. Assume first f has a pole of order k at z_0 and write $f(z) = (z - z_0)^{-k} h(z)$, where h is holomorphic at z_0, $h(z_0) \neq 0$. Write $h(z) = \sum_{n=0}^{\infty} b_n(z - z_0)^n$; this series converging in some disc of positive radius around z_0. Then

$$f(z) = (z - z_0)^{-k} \sum_{n=0}^{\infty} b_n(z - z_0)^n = \sum_{n=0}^{k} b_n(z - z_0)^{n-k} = \frac{b_0}{(z - z_0)^k} + \cdots + \frac{b_{k-1}}{z - z_0} + g(z),$$

where $g(z) = \sum_{n=0}^{k} b_{n+k}(z - z_0)^n$ is holomorphic at z_0.

Conversely, assuming that

$$g(z) = f(z) - \left(\frac{a_{-k}}{(z - z_0)^k} + \cdots + \frac{a_{-1}}{z - z_0} \right)$$

is holomorphic at z_0, with $a_{-k} \neq 0$, multiplying by $(z - z_0)^k$ we get

$$(z - z_0)^k f(z) = a_{-k} + \cdots + a_{-1}(z - z_0)^{k-1} + (z - z_0)^k g(z)$$

is holomorphic at z_0 and $a_{-k} + \cdots + a_{-1}(z - z_0)^{k-1} + (z - z_0)^k g(z) \bigg|_{z=z_0} = a_{-k} \neq 0$. \hfill \blacksquare

- We see that f has a pole of order $k \in \mathbb{N}$ at z_0 if and only if we can write

$$f(z) = \sum_{n=-k}^{\infty} a_n(z - z_0)^n = \frac{a_{-k}}{(z - z_0)^k} + \cdots + \frac{a_{-1}}{z - z_0} + \sum_{n=0}^{\infty} a_n(z - z_0)^n,$$

with $a_{-k} \neq 0$ and the power series converging (to $f(z)$, of course) in some disc of positive radius. A series in positive and negative powers of $z - z_0$ is called a *Laurent series*, the part of negative powers; namely,

$$\frac{a_{-k}}{(z - z_0)^k} + \cdots + \frac{a_{-1}}{z - z_0}$$

is called the principal part of the series, and the coefficient of the first negative power; namely a_{-1}, is called the *residue* of f at z_0, and will be denoted by $\text{res}_{z_0} f$.

We will probably see eventually the following theorem:

Let $0 < r < R$ and assume f is holomorphic in the open annulus $A_{r,R}(z_0) = \{ z \in \mathbb{C} : r < |z - z_0| < R \}$. Then there exist $a_n \in \mathbb{C}$ for $n \in \mathbb{Z}$ such that

\[
f(z) = \sum_{n=-\infty}^{\infty} a_n(z - z_0)^n
\]

for $r < |z - z_0| < R$. More precisely, the non-negative part of this series, $\sum_{n=0}^{\infty} a_n(z - z_0)^n$, converges absolutely for $|z - z_0| < R$, while the negative part (a.k.a the principal part) converges absolutely for $|z - z_0| > r$. An important case is the case $r = 0$. In this case f is holomorphic at z_0 if and only if the principal part vanishes. It has a pole at z_0 if and only if there is a non vanishing principal part, but it consists of only a finite number of terms.

The series in (2) is known as the Laurent series of f. In case of $r = 0$; that is, when f is holomorphic in $D'_R(z_0)$, we now have the following classification:

1. If $a_n = 0$ for all $n \in \mathbb{N}$, then f is holomorphic (or extends as such) at z_0. Moreover, if then $k \in \mathbb{N}$ is such that $a_k \neq 0$ but $a_n = 0$ for $n < k$, then f has a zero of order k at z_0.
2. If there is only a finite but non zero number of negative terms; that is, if there is $k \in \mathbb{N}$ such that $a_{-k} \neq 0$, but $a_n = 0$ if $n < -k$, then f has a pole of order k at z_0.
3. If the set of $n \in \mathbb{N}$ such that $a_{-n} \neq 0$ is infinite, then f has an essential singularity at z_0. In this case we still call the coefficient a_{-1} the residue of f at z_0.