I'm only adding solutions in cases where I felt most proofs that I saw where not quite satisfactory. There is a typo in Exercise 1, part f. The corrected version has been made part of Homework 7.

1. Assume \(A \) is an algebra of subsets of the set \(X \). Prove: If \(A, B \in A \), then so are \(A \setminus B = \{ x \in A : x \notin B \} \), \(A \triangle B = (A \cup B) \setminus (A \cap B) \).

Show also that \(A \triangle B = (A \setminus B) \cup (B \setminus A) \). It is called the symmetric difference between \(A \) and \(B \).

2. Classify the following families \(C \) of subsets of a set \(X \) according to:
 (a) ABNS (Algebra but not \(\sigma \)-algebra)
 (b) SA (\(\sigma \)-algebra)
 (c) N (Neither)

No proofs are required, but it is my fervent hope that you would all know how to prove it if so required.

(a) \(X \) any set, \(A \subset X \), \(\emptyset \neq A \neq X \), \(C = \{ \emptyset, X, A, X \setminus A \} \).

Solution. SA

(b) \(X = \mathbb{R} \) and \(C \) consists of all sets that are either finite or have a finite complement.

Solution. ABNS

(c) \(X = \mathbb{R} \) and \(C \) consists of all sets that are either countable or have a countable complement. (Finite sets count as countable!)

Solution. SA

(d) \(X = \mathbb{R} \) and \(C \) is the family of all open subsets of \(\mathbb{R} \).

Solution. N

(e) \(X = \mathbb{R} \) and \(C \) is the family of all sets that are either open or closed.

Solution. N

(f) \(X = \mathbb{R} \) and \(C \) is the family consisting of \(\mathbb{R} \), and all sets of one of the following forms:

i. \(\bigcup_{k=1}^{n} (a_k, b_k] \),

ii. \((a_0, \infty] \cup \bigcup_{k=1}^{n} (a_k, b_k] \),

iii. \((-\infty, b_0] \cup \bigcup_{k=1}^{n} (a_k, b_k] \).

(The number of sets \(n \) in the unions above varies, all \(n \in \mathbb{N} \) are involved.)

Solution. This was supposed to be ABNS, but is actually N. See Homework 7 for a corrected version.

3. The smallest \(\sigma \)-algebra containing all open subsets of a metric space \(X \) is known as the Borel \(\sigma \)-algebra of \(X \), or the family of Borel subsets of \(X \). We will write \(\mathcal{B}(X) \) to denote the \(\sigma \)-algebra of Borel subsets of \(X \). To repeat, \(\mathcal{B}(X) \) is the \(\sigma \)-algebra generated by the family of open subsets of \(X \). Prove that \(\mathcal{B}(X) \) is also the \(\sigma \)-algebra generated by all closed sets of \(X \).

Solution. Let \(\mathcal{O} \) be the family of all open subsets of \(X \), \(C \) the family of all closed subsets of \(X \). Let \(A \in \mathcal{O} \). Then \(A^c \) is closed, hence \(A^c \in \sigma(C) \), hence also \(A \in \sigma(C) \). This proves that \(\sigma(C) \) contains all open sets, being a \(\sigma \)-algebra containing all open sets, it must contain \(\sigma(\mathcal{O}) = \mathcal{B}(X) \). Similarly one sees that \(\mathcal{B}(X) = \sigma(\mathcal{O}) \supset \sigma(\mathcal{O}) \).

4. Let \(C \) be the family of all singleton subsets of \(\mathbb{R} \). That is, \(A \in C \) if and only if \(A \) is a set consisting of a single element. Describe explicitly:
(a) The algebra generated by \mathcal{C}.
(b) The σ-algebra generated by \mathcal{C}.

5. Let X be a set. An outer measure in X is any map $\mu : \mathcal{P}(X) \to [0, \infty]$ with the following properties.

(a) $\mu(\emptyset) = 0$.
(b) If $A \subset B \subset X$, then $\mu(A) \leq \mu(B)$.
(c) If $\{A_n\}$ is a sequence of subsets of X, then

$$\mu \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \mu(A_n).$$

Suppose we define for $A \subset \mathbb{R}$, $\mu(A) = \max(\sup A, 0)$. Is μ an outer measure in \mathbb{R}?

You should use here, incidentally, that $\sup \emptyset = -\infty$ and that a set is bounded above if and only if its sup is $< \infty$; in other words, the sup of sets that are not bounded above is ∞.

Solution.

We prove all the properties hold.

(a) $\mu(\emptyset) = \max(\sup \emptyset, 0) = \max(-\infty, 0) = 0$.
(b) If $A \subset B \subset \mathbb{R}$, then every upper bound of B is also an upper bound of A; in particular $\sup B$ is an upper bound of A, hence $\sup B \geq \sup A$. Thus also

$$\mu(B) = \max(\sup B, 0) \geq \max(\sup A, 0) = \mu(A).$$

(c) Let $\{A_n\}$ be a sequence of subsets of \mathbb{R}. Let $x \in \bigcup_{n=1}^{\infty} A_n$. Then there is $m \in \mathbb{N}$ such that $x \in A_m$, hence

$$x \leq \sup A_m \leq \mu(A_m) \leq \sup_{n \in \mathbb{N}} \mu(A_n) \leq \sum_{n=1}^{\infty} \mu(A_n).$$

Thus $\sum_{n=1}^{\infty} \mu(A_n)$ is an upper bound of $\bigcup_{n=1}^{\infty} A_n$, hence $\sup \bigcup_{n=1}^{\infty} A_n \leq \sum_{n=1}^{\infty} \mu(A_n)$. Moreover, $\sum_{n=1}^{\infty} \mu(A_n) \geq 0$, thus

$$\mu \left(\bigcup_{n=1}^{\infty} A_n \right) = \max \left(\sup_{n=1}^{\infty} A_n, 0 \right) \leq \sum_{n=1}^{\infty} \mu(A_n).$$

Simple, isn’t it?