Corresponding ordinal: ninety-fifth.

The number 95 is the forty-eighth odd number and the seventieth composite number.

As a product of primes: $95 = 5 \cdot 19$.

The number 95 has four divisors: 1, 5, 19, 95.

The number 95 is the seventy-third deficient number: $s(95) = 1 + 5 + 19 = 25 < 95$.

As a sum of four or fewer squares: $95 = 1^2 + 2^2 + 3^2 + 9^2 = 1^2 + 3^2 + 6^2 + 7^2 = 3^2 + 5^2 + 5^2 + 6^2$.

As a sum of nine or fewer cubes: $95 = 4 \cdot 1^3 + 3^3 + 4^3 = 1^3 + 5 \cdot 2^3 + 2 \cdot 3^3$.

As the difference of two squares: $95 = 12^2 - 7^2 = 48^2 - 47^2$.

The number 95 appears in five Pythagorean triples: $[57, 76, 95]$, $[95, 168, 193]$, $[95, 228, 247]$, $[95, 900, 905]$, $[95, 4512, 4513]$. The second and the last are primitive.

As a sum of three odd primes: $95 = 3 + 3 + 89 = 3 + 13 + 79 = 3 + 19 + 73 = 3 + 31 + 61 = 5 + 7 + 83 = 5 + 11 + 79 = 5 + 17 + 73 = 5 + 19 + 71 = 5 + 23 + 67 = 5 + 29 + 61 = 5 + 31 + 59 = 5 + 37 + 53 = 5 + 43 + 47 = 7 + 17 + 71 = 7 + 29 + 59 = 7 + 41 + 47 = 11 + 11 + 73 = 11 + 13 + 71 = 11 + 17 + 67 = 11 + 23 + 61 = 11 + 31 + 53 = 11 + 37 + 47 = 11 + 41 + 43 = 13 + 23 + 59 = 13 + 29 + 53 = 13 + 41 + 41 = 17 + 17 + 61 = 17 + 19 + 59 = 17 + 31 + 47 = 17 + 37 + 41 = 19 + 23 + 53 = 19 + 29 + 47 = 23 + 29 + 43 = 23 + 31 + 41 = 29 + 29 + 37$.

The number 95 is an aspiring number. Its aliquot sequence, obtained by repeatedly summing proper divisors, is 95, 25, 6, and ends in a perfect number. So 95 aspires to be a perfect number, but isn’t one. The number 25 and 95 are the only aspiring numbers less than 100. The next two aspiring numbers are 119 and 143.
Martin Luther’s 95 Theses on the Power and Efficacy of Indulgences started the Reformation.

I-95 is the major north-south highway on the east coast of the United States.