Algebraic functions, calculus style

Fred Richman

Florida Atlantic University

11 November 2011
Las Cruces
Calculus books consider the function $|x|$ to be algebraic.
Calculus books consider the function $|x|$ to be algebraic. Why not? It satisfies the polynomial $X^2 - x^2$.
Calculus books consider the function $|x|$ to be algebraic. Why not? It satisfies the polynomial $X^2 - x^2$. But this polynomial has four continuous roots: $\pm x$ and $\pm |x|$.
Calculus books consider the function $|x|$ to be algebraic. Why not? It satisfies the polynomial $X^2 - x^2$. But this polynomial has four continuous roots: $\pm x$ and $\pm |x|$. Algebraic functions are supposed to form a field.
Calculus books consider the function $|x|$ to be algebraic. Why not? It satisfies the polynomial $X^2 - x^2$. But this polynomial has four continuous roots: $\pm x$ and $\pm |x|$. Algebraic functions are supposed to form a field. There are two recognized kinds of algebraic functions: implicit and explicit.
Calculus books consider the function $|x|$ to be algebraic. Why not? It satisfies the polynomial $X^2 - x^2$.

But this polynomial has four continuous roots: $\pm x$ and $\pm |x|$.

Algebraic functions are supposed to form a field.

There are two recognized kinds of algebraic functions: implicit and explicit.

Implicit ones satisfy polynomials in X with coefficients in $\mathbb{R}[x]$.

Explicit ones are constructed from \mathbb{R} and x by the arithmetic operations, and extracting roots. These are the algebraic functions of the calculus books.

So $|x|$ is an explicit algebraic function because it is equal to $p^2 x^2$.
Calculus books consider the function $|x|$ to be algebraic. Why not? It satisfies the polynomial $X^2 - x^2$. But this polynomial has four continuous roots: $\pm x$ and $\pm |x|$. Algebraic functions are supposed to form a field. There are two recognized kinds of algebraic functions: implicit and explicit. Implicit ones satisfy polynomials in X with coefficients in $\mathbb{R}[x]$. Explicit ones are constructed from \mathbb{R} and x by the arithmetic operations, and extracting roots. These are the algebraic functions of the calculus books.
Calculus books consider the function $|x|$ to be algebraic. Why not? It satisfies the polynomial $X^2 - x^2$.

But this polynomial has four continuous roots: $\pm x$ and $\pm |x|$.

Algebraic functions are supposed to form a field.

There are two recognized kinds of algebraic functions: implicit and explicit. Implicit ones satisfy polynomials in X with coefficients in $\mathbb{R}[x]$.

Explicit ones are constructed from \mathbb{R} and x by the arithmetic operations, and extracting roots. These are the algebraic functions of the calculus books.

So $|x|$ is an explicit algebraic function because it is equal to $\sqrt{x^2}$.
Theorem

Every explicit algebraic function is an implicit algebraic function.
Theorem

Every explicit algebraic function is an implicit algebraic function.

- James Pierpont, *Lectures on the theory of functions of a real variable*, 1905. “The demonstration is simple but will not be given here”
Theorem

Every explicit algebraic function is an implicit algebraic function.

- James Pierpont, *Lectures on the theory of functions of a real variable*, 1905. “The demonstration is simple but will not be given here”

- G. H. Hardy, *A course in pure mathematics*, 1908. “this is in fact true, and indeed not difficult to prove, though we shall not delay to write out a formal proof here.”
Theorem

Every explicit algebraic function is an implicit algebraic function.

- James Pierpont, *Lectures on the theory of functions of a real variable*, 1905. “The demonstration is simple but will not be given here”
- G. H. Hardy, *A course in pure mathematics*, 1908. “this is in fact true, and indeed not difficult to prove, though we shall not delay to write out a formal proof here.”
- James Pierpont, *Functions of a complex variable*, 1914. “It is known ... every explicit algebraic function is an algebraic function.”
Theorem

Every explicit algebraic function is an implicit algebraic function.

- James Pierpont, *Lectures on the theory of functions of a real variable*, 1905. “The demonstration is simple but will not be given here”
- G. H. Hardy, *A course in pure mathematics*, 1908. “this is in fact true, and indeed not difficult to prove, though we shall not delay to write out a formal proof here.”
- James Pierpont, *Functions of a complex variable*, 1914. “It is known . . . every explicit algebraic function is an algebraic function.”
- R. W. Hamming, *Monthly* 1970. “We now indicate the proof that this second definition is contained in the first.”
Domains
Domains

- $\text{dom}(f + g) = \text{dom}(f \cdot g) = \text{dom } f \cap \text{dom } g$,
Partial functions

Domains

- \(\text{dom}(f + g) = \text{dom}(f \cdot g) = \text{dom} f \cap \text{dom} g, \)
- \(\text{dom} \frac{1}{f} = \{ x \in \text{dom} f : f(x) \neq 0 \}, \)
Domains

- \(\text{dom}(f + g) = \text{dom}(f \cdot g) = \text{dom} f \cap \text{dom} g, \)
- \(\text{dom} \frac{1}{f} = \{ x \in \text{dom} f : f(x) \neq 0 \}, \)
- \(\text{dom} \sqrt[m]{f} = \begin{cases} \text{dom} f & \text{if } m \text{ is odd} \\ \{ x \in \text{dom} f : f(x) \geq 0 \} & \text{if } m \text{ is even} \end{cases}. \)
Domains

- \(\text{dom}(f + g) = \text{dom}(f \cdot g) = \text{dom } f \cap \text{dom } g \),
- \(\text{dom } \frac{1}{f} = \{ x \in \text{dom } f : f(x) \neq 0 \} \),
- \(\text{dom } \sqrt[\text{m}]{f} = \begin{cases} \text{dom } f & \text{if } m \text{ is odd} \\ \{ x \in \text{dom } f : f(x) \geq 0 \} & \text{if } m \text{ is even} \end{cases} \).

Not a ring. Not even an abelian group under addition.
Partial functions

Domains

- $\text{dom}(f + g) = \text{dom}(f \cdot g) = \text{dom} f \cap \text{dom} g$,
- $\text{dom} \frac{1}{f} = \{x \in \text{dom} f : f(x) \neq 0\}$,
- $\text{dom} \sqrt[m]{f} = \begin{cases} \text{dom} f & \text{if } m \text{ is odd} \\ \{x \in \text{dom} f : f(x) \geq 0\} & \text{if } m \text{ is even} \end{cases}$.

Not a ring. Not even an abelian group under addition.

The signum function defined by

\[
\text{sgn}(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{if } x = 0 \\
-1 & \text{if } x < 0
\end{cases}
\]

is a root of the polynomial $X^3 - X$, hence algebraic, yet it is not an explicit algebraic function.
Domains

- $\text{dom}(f + g) = \text{dom}(f \cdot g) = \text{dom} f \cap \text{dom} g$,
- $\text{dom} \frac{1}{f} = \{ x \in \text{dom} f : f(x) \neq 0 \}$,
- $\text{dom} \sqrt[m]{f} = \begin{cases} \text{dom} f & \text{if } m \text{ is odd} \\ \{ x \in \text{dom} f : f(x) \geq 0 \} & \text{if } m \text{ is even} \end{cases}$.

Not a ring. Not even an abelian group under addition.
The signum function defined by

$$\text{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

is a root of the polynomial $X^3 - X$, hence algebraic, yet it is not an explicit algebraic function.

Theorem

Every explicit algebraic function is continuous on its domain.
Partial functions

Theorem

If f and g are algebraic functions, then so are $f + g$, $f \cdot g$, $1/f$, and $\sqrt[m]{f}$.
Theorem

If \(f \) and \(g \) are algebraic functions, then so are \(f + g \), \(f \cdot g \), \(1/f \), and \(\sqrt[m]{f} \).

Let \(h \) be one of \(f + g \) or \(f \cdot g \). Let \(D = \text{dom} \ h \).
Theorem

If f and g are algebraic functions, then so are $f + g$, $f \cdot g$, $1/f$, and $\sqrt[m]{f}$.

Let h be one of $f + g$ or $f \cdot g$. Let $D = \text{dom } h$.

We may assume that $D = \text{dom } f = \text{dom } g$ and that D is nonempty.
Theorem

If \(f \) and \(g \) are algebraic functions, then so are \(f + g \), \(f \cdot g \), \(1/f \), and \(\sqrt[m]{f} \).

Let \(h \) be one of \(f + g \) or \(f \cdot g \). Let \(D = \text{dom} \ h \).

We may assume that \(D = \text{dom} \ f = \text{dom} \ g \) and that \(D \) is nonempty.

The ring \(T \) of all functions on \(D \) is an \(\mathbb{R}[x] \)-module.
Theorem

If f and g are algebraic functions, then so are $f + g$, $f \cdot g$, $1/f$, and \sqrt{m}/f.

Let h be one of $f + g$ or $f \cdot g$. Let $D = \text{dom } h$.

We may assume that $D = \text{dom } f = \text{dom } g$ and that D is nonempty.

The ring T of all functions on D is an $\mathbb{R}[x]$-module.

Let S be the nonzero elements of $\mathbb{R}[x]$ and $A = T_S$. A is an algebra over the field $\mathbb{R}(x)$.
Theorem

If \(f \) and \(g \) are algebraic functions, then so are \(f + g \), \(f \cdot g \), \(1/f \), and \(\sqrt[m]{f} \).

Let \(h \) be one of \(f + g \) or \(f \cdot g \). Let \(D = \text{dom } h \).

We may assume that \(D = \text{dom } f = \text{dom } g \) and that \(D \) is nonempty.

The ring \(T \) of all functions on \(D \) is an \(\mathbb{R} [x] \)-module.

Let \(S \) be the nonzero elements of \(\mathbb{R} [x] \) and \(A = T_S \).

\(A \) is an algebra over the field \(\mathbb{R} (x) \).

In \(A \), both \(f \) and \(g \) are integral over \(\mathbb{R} (x) \), hence so is \(h \).
Theorem

If f *and* g *are algebraic functions, then so are* $f + g$, $f \cdot g$, $1/f$, *and* $\sqrt[m]{f}$.

Let h be one of $f + g$ or $f \cdot g$. Let $D = \text{dom } h$.

We may assume that $D = \text{dom } f = \text{dom } g$ and that D is nonempty.

The ring T of all functions on D is an $R[x]$-module.

Let S be the nonzero elements of $R[x]$ and $A = Ts$.

A is an algebra over the field $R(x)$.

In A, both f and g are integral over $R(x)$, hence so is h.

There is a nonzero polynomial P with coefficients in $R[x]$ such that $cP(h) = 0$ for some $c \in S$.
Some examples: \(x/x, \ 1/x - 1/x, \ \sqrt{x}. \)
Some examples: x/x, $1/x - 1/x$, \sqrt{x}.

Theorem

The zero set of a continuous algebraic function on an open interval has only a finite number of connected components.
Some examples: x/x, $1/x - 1/x$, \sqrt{x}.

Theorem

The zero set of a continuous algebraic function on an open interval has only a finite number of connected components.

So, for example, the functions $\sin x$ and $\cos x$ are not algebraic.
Some examples: \(\frac{x}{x}, \frac{1}{x} - \frac{1}{x}, \sqrt{x}. \)

Theorem

The zero set of a continuous algebraic function on an open interval has only a finite number of connected components.

So, for example, the functions \(\sin x \) and \(\cos x \) are not algebraic.

Corollary

An analytic algebraic function on an open interval is either identically zero or has only a finite number of zeros.
Some examples: \(x/x, \quad 1/x - 1/x, \quad \sqrt{x}. \)

Theorem

The zero set of a continuous algebraic function on an open interval has only a finite number of connected components.

So, for example, the functions \(\sin x \) and \(\cos x \) are not algebraic.

Corollary

An analytic algebraic function on an open interval is either identically zero or has only a finite number of zeros.

Theorem

A continuous algebraic function on an open interval is piecewise analytic with a finite number of pieces.
Theorem

If f is an explicit algebraic function, then there exist points $t_1 < t_2 < \cdots < t_n$ cutting up \mathbb{R} into $n + 1$ open intervals I_0, I_1, \ldots, I_n such that on each I_i

- f is undefined or
- f is analytic and never 0 (hence positive or negative) or
- f is identically 0.
Theorem

If f is an explicit algebraic function, then there exist points $t_1 < t_2 < \cdots < t_n$ cutting up \mathbb{R} into $n + 1$ open intervals I_0, I_1, \ldots, I_n such that on each I_i

- f is undefined or
- f is analytic and never 0 (hence positive or negative) or
- f is identically 0.

Theorem (splicing)

Let $t_1 < t_2 < \cdots < t_n$ be real numbers. These points break up \mathbb{R} into $n + 1$ closed intervals I_0, I_1, \ldots, I_n. If f_i is an explicit algebraic function for $i = 0, \ldots, n$, and $f_{i-1}(t_i) = f_i(t_i)$ (possibly both undefined) for $i = 1, \ldots, n$, then there is an explicit algebraic function that is equal to f_i on each I_i.
We want a solution of $X^3 - 3X + x = 0$. Here is a plot of $x = 3X - X^3$. This is a functional instance of casus irreducibilis, an irreducible cubic with three real roots. You can see the three functions, $f_1(x)$, $f_2(x)$, $f_3(x)$, that are the continuous roots of $X^3 - 3X + x$ for $x \in (-2, 2)$. Analytic.
We want a solution of $X^3 - 3X + x = 0$. Here is a plot of $x = 3X - X^3$.

This is a functional instance of *casus irreducibilis*, an irreducible cubic with three real roots.
We want a solution of $X^3 - 3X + x = 0$. Here is a plot of $x = 3X - X^3$.

This is a functional instance of *casus irreducibilis*, an irreducible cubic with three real roots. You can see the three functions, $f_1(x) \leq f_2(x) \leq f_3(x)$, that are the continuous roots of $X^3 - 3X + x$ for $x \in (-2, 2)$. Analytic.
The proof that $f_1(x)$ is not explicitly algebraic is modeled after van der Waerden’s proof that the *casus irreducibilis* is not solvable with real radicals.
The proof that \(f_1(x) \) is not explicitly algebraic is modeled after van der Waerden’s proof that the *casus irreducibilis* is not solvable with real radicals.

At the end of his book, van der Waerden goes into the theory of formally real fields: fields where if a sum of squares is zero, then each square is zero; but in his treatment of *casus irreducibilis*, which comes several chapters before, he seems to be dealing with a subfield of the real numbers.
The proof that $f_1(x)$ is not explicitly algebraic is modeled after van der Waerden’s proof that the *casus irreducibilis* is not solvable with real radicals.

At the end of his book, van der Waerden goes into the theory of formally real fields: fields where if a sum of squares is zero, then each square is zero; but in his treatment of *casus irreducibilis*, which comes several chapters before, he seems to be dealing with a subfield of the real numbers.

Hardy gives the polynomial $X^5 - X - x$ for an example of an algebraic function which is not an explicit algebraic function. Hardy says, the “proof is difficult and cannot be attempted here.”
Real valued partial functions
Real valued partial functions

Commutative semiring (commutative rig?)
Real valued partial functions

Commutative semiring (commutative rig?)

- Two commutative monoids, addition with 0 and multiplication with 1.
Real valued partial functions

Commutative semiring (commutative rig?)
- Two commutative monoids, addition with 0 and multiplication with 1.
- Multiplication distributes over addition.
Real valued partial functions

Commutative semiring (commutative rig?)

- Two commutative monoids, addition with 0 and multiplication with 1.
- Multiplication distributes over addition.

Don’t require $0 \cdot a = 0$, which is not true in our setting.
Real valued partial functions

Commutative semiring (commutative rig?)

- Two commutative monoids, addition with 0 and multiplication with 1.
- Multiplication distributes over addition.

Don’t require $0 \cdot a = 0$, which is not true in our setting.

- If e and f are additive idempotents, then $e + f = ef$.
Real valued partial functions

Commutative semiring (commutative rig?)

- Two commutative monoids, addition with 0 and multiplication with 1.
- Multiplication distributes over addition.

Don’t require $0 \cdot a = 0$, which is not true in our setting.

- If e and f are additive idempotents, then $e + f = ef$.

Theorem

*If e is an additive idempotent, then so is ae. The additive idempotents are exactly the multiples of 0. For each a there is a unique additive idempotent $e = a0$ such that $a + e = a$ and $ae = e$. If e is an additive idempotent, then $\{a : a + e = a$ and $ae = e\}$ is a ring with additive identity e and multiplicative identity $1 + e$.***
Yay!