The simplex algorithm

Fred Richman

Florida Atlantic University

7 November 2012
Maximization problem

\[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array} \]

Minimization problem

\[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array} \]

Solution to maximum problem:

\[s_1 = s_2 = 0, \quad t_1 = 3, \quad t_2 = 6, \quad v = 9. \]

Solution to minimum problem:

\[t_1 = t_2 = 0, \quad s_1 = 7, \quad s_2 = 8, \quad v = 9. \]
Maximization problem

\[\begin{align*}
s_1 + 2s_2 & \leq 3 \\
4s_1 + 5s_2 & \leq 6 \\
\text{maximize} & \quad -7s_1 - 8s_2 + 9
\end{align*} \]

Subject to

\[\begin{array}{ccc}
st_1 & s_2 & t_1 \\
t_2 & & \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array} \]

Solution to maximum problem:

\[\begin{align*}
s_1 & = s_2 = 0, \\
t_1 & = 3, \\
t_2 & = 6, \\
v & = 9. \\
\end{align*} \]

Minimization problem

\[\begin{align*}
t_1 + 4t_2 & \leq 2 \\
t_2 + 5t_2 & \leq 8 \\
\text{minimize} & \quad 3t_1 + 6t_2 + 9 \\
\end{align*} \]

Subject to

\[\begin{array}{ccc}
st_1 & s_2 & t_1 \\
t_2 & & \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array} \]

Solution to minimum problem:

\[\begin{align*}
s_1 & = s_2 = 7, \\
t_1 & = t_2 = 0, \\
v & = 9. \\
\end{align*} \]
Maximization problem

\[\begin{align*}
 s_1 + 2s_2 & \leq 3 \\
 4s_1 + 5s_2 & \leq 6 \\
 \text{maximize} & \quad -7s_1 - 8s_2 + 9
\end{align*} \]

\[t_1 = -s_1 - 2s_2 + 3 \]
\[t_2 = -4s_1 - 5s_2 + 6 \]

payoff = \[-7s_1 - 8s_2 + 9 \]

Minimization problem

\[\begin{align*}
 t_1 + 4t_2 & \geq -7 \\
 2t_1 + 5t_2 & \geq -8 \\
 \text{minimize} & \quad 3t_1 + 6t_2 + 9
\end{align*} \]

\[s_1 = t_1 + 4t_2 + 7 \]
\[s_2 = 2t_1 + 5t_2 + 8 \]

cost = \[3t_1 + 6t_2 + 9 \]
Maximization problem

\[s_1 + 2s_2 \leq 3 \]
\[4s_1 + 5s_2 \leq 6 \]
maximize \[-7s_1 - 8s_2 + 9 \]

\[t_1 = -s_1 - 2s_2 + 3 \]
\[t_2 = -4s_1 - 5s_2 + 6 \]

payoff = \[-7s_1 - 8s_2 + 9 \]

Minimization problem

\[t_1 + 4t_2 \geq -7 \]
\[2t_1 + 5t_2 \geq -8 \]
minimize \[3t_1 + 6t_2 + 9 \]

\[s_1 = t_1 + 4t_2 + 7 \]
\[s_2 = 2t_1 + 5t_2 + 8 \]

cost = \[3t_1 + 6t_2 + 9 \]

Solution to maximum problem: \[s_1 = s_2 = 0, \ t_1 = 3, \ t_2 = 6, \ \nu = 9. \]
Maximization problem

\[
\begin{align*}
 s_1 + 2s_2 &\leq 3 \\
 4s_1 + 5s_2 &\leq 6 \\
 \text{maximize} & \quad -7s_1 - 8s_2 + 9
\end{align*}
\]

\[
\begin{align*}
 t_1 &= -s_1 - 2s_2 + 3 \\
 t_2 &= -4s_1 - 5s_2 + 6
\end{align*}
\]

payoff = \(-7s_1 - 8s_2 + 9 \)

Minimization problem

\[
\begin{align*}
 t_1 + 4t_2 &\geq -7 \\
 2t_1 + 5t_2 &\geq -8 \\
 \text{minimize} & \quad 3t_1 + 6t_2 + 9
\end{align*}
\]

\[
\begin{align*}
 s_1 &= t_1 + 4t_2 + 7 \\
 s_2 &= 2t_1 + 5t_2 + 8
\end{align*}
\]

cost = \(3t_1 + 6t_2 + 9 \)

Solution to maximum problem: \(s_1 = s_2 = 0, \ t_1 = 3, \ t_2 = 6, \ \nu = 9 \).
Solution to minimum problem: \(t_1 = t_2 = 0, \ s_1 = 7, \ s_2 = 8, \ \nu = 9 \).
Maximum problem is unfeasible:

\[s_1 + 2s_2 < 3. \]

Minimum problem is unbounded: cost is

\[3t_1 + 6t_2 + 9. \]

Pivot at the 4.

Solution to max problem:

\[t_2 = s_2 = 0, \quad t_1 = \frac{3}{2}, \quad s_1 = \frac{3}{2}, \quad v = \frac{39}{2}. \]

Solution to min problem:

\[t_1 = s_1 = 0, \quad t_2 = \frac{7}{4}, \quad s_2 = \frac{67}{4}, \quad v = \frac{39}{2}. \]
Maximum problem is unfeasible: $s_1 + 2s_2 \leq -3$.

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>t_2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Solution to max problem:
$t_2 = s_2 = 0, t_1 = 3/2, s_1 = 3/2, v = 39/2$.

Solution to min problem:
$t_1 = s_1 = 0, t_2 = 7/4, s_2 = 67/4, v = 39/2$.

Fred Richman (FAU)
Maximum problem is unfeasible: $s_1 + 2s_2 \leq -3$.
Minimum problem is unbounded: cost is $-3t_1 + 6t_2 + 9$.

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>t_2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Maximum problem is unfeasible: \(s_1 + 2s_2 \leq -3 \).
Minimum problem is unbounded: cost is \(-3t_1 + 6t_2 + 9\).

Fred Richman (FAU)

The simplex algorithm
Maximum problem is unfeasible: $s_1 + 2s_2 \leq -3$.

Minimum problem is unbounded: cost is $-3t_1 + 6t_2 + 9$.

$$
\begin{array}{ccc}
 & s_1 & s_2 \\
t_1 & 1 & 2 & -3 \\
t_2 & 4 & 5 & 6 \\
 & 7 & 8 & 9 \\
\end{array}
$$

Pivot at the 4.

$$
\begin{array}{ccc}
 & s_1 & s_2 \\
t_1 & 1 & 2 & 3 \\
t_2 & 4 & 5 & 6 \\
 & -7 & 8 & 9 \\
\end{array}
$$
Maximum problem is unfeasible: \(s_1 + 2s_2 \leq -3 \).
Minimum problem is unbounded: cost is \(-3t_1 + 6t_2 + 9\).

Pivot at the 4.

<table>
<thead>
<tr>
<th>(t_1)</th>
<th>(s_1)</th>
<th>(s_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(t_1)</th>
<th>(s_1)</th>
<th>(s_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1/4</td>
<td>3/4</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1/4</td>
<td>5/4</td>
</tr>
<tr>
<td></td>
<td>7/4</td>
<td>67/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39/2</td>
</tr>
</tbody>
</table>

Solution to max problem: \(t_2 = s_2 = 0 \), \(t_1 = 3/2 \), \(s_1 = 3/2 \), \(v = 39/2 \).

Solution to min problem: \(t_1 = s_1 = 0 \), \(t_2 = 7/4 \), \(s_2 = 67/4 \), \(v = 39/2 \).
Maximum problem is unfeasible: \(s_1 + 2s_2 \leq -3 \).
Minimum problem is unbounded: cost is \(-3t_1 + 6t_2 + 9\).

\[
\begin{array}{ccc|c}
 & s_1 & s_2 \\
\hline
t_1 & 1 & 2 & -3 \\
t_2 & 4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array}
\]

Pivot at the 4.

\[
\begin{array}{ccc|c}
 & s_1 & s_2 \\
\hline
t_1 & 1 & 2 & 3 \\
t_2 & 4 & 5 & 6 \\
-7 & 8 & 9 \\
\end{array}
\]

Solution to max problem: \(t_2 = s_2 = 0, \ t_1 = 3/2, \ s_1 = 3/2, \ v = 39/2 \).
Maximum problem is unfeasible: \(s_1 + 2s_2 \leq -3 \).
Minimum problem is unbounded: cost is \(-3t_1 + 6t_2 + 9 \).

Pivot at the 4.

Solution to max problem: \(t_2 = s_2 = 0, t_1 = \frac{3}{2}, s_1 = \frac{3}{2}, v = \frac{39}{2} \).
Solution to min problem: \(t_1 = s_1 = 0, t_2 = \frac{7}{4}, s_2 = \frac{67}{4}, v = \frac{39}{2} \).
Exercises 3 and 4.

First column: max prob 3 is unbounded.
Second row: max prob 4 is unfeasible.

Fred Richman (FAU)
The simplex algorithm

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>t_2</td>
<td>-4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>s_1</td>
<td>s_2</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>t_1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>t_2</td>
<td>-4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>8</td>
</tr>
</tbody>
</table>

Maximum problem is unfeasible: $2s_2 \leq -3$.
Maximum problem is unfeasible: $2s_2 \leq -3$.
Minimum problem is unfeasible: $-4t_2 \geq 7$.

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>t_2</td>
<td>-4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>8</td>
</tr>
</tbody>
</table>
Minimum problem is unfeasible: \(-4t_2 \geq 7\).

Exercises 3 and 4.
Maximum problem is unfeasible: $2s_2 \leq -3$.
Minimum problem is unfeasible: $-4t_2 \geq 7$.

Exercises 3 and 4.
Maximum problem is unfeasible: \(2s_2 \leq -3\).
Minimum problem is unfeasible: \(-4t_2 \geq 7\).

Exercises 3 and 4.

```
-2  3  -1  2
0  -1  2  3
-1  0  1  1
-1  1  2  2
```

```
7  5  3  2
6  1  2 -4
-3 -1 -1  1
1  -1  0  0
```
Maximum problem is unfeasible: $2s_2 \leq -3$.
Minimum problem is unfeasible: $-4t_2 \geq 7$.

Exercises 3 and 4.

First column: max prob 3 is unbounded.
Maximum problem is unfeasible: $2s_2 \leq -3$.
Minimum problem is unfeasible: $-4t_2 \geq 7$.

Exercises 3 and 4.

First column: max prob 3 is unbounded.
Second row: max prob 4 is unfeasible.
Yay!