Walker's cancellation theorem

Robert Lubarsky and Fred Richman Florida Atlantic University

22 August 2012

Abstract

Walker's cancellation theorem says that if $B \oplus \mathbf{Z}$ is isomorphic to $C \oplus \mathbf{Z}$ in the category of abelian groups, then B is isomorphic to C. We construct an example in a diagram category of abelian groups where the theorem fails. As a consequence, the original theorem does not have a constructive proof even if B and C are subgroups of the free abelian group on two generators. Both of these results contrast with a group whose endomorphism ring has stable range one, which allows a constructive proof of cancellation and also a proof in any diagram category.

1 Cancellation

An object G in an additive category is **cancellable** if whenever $B \oplus G$ is isomorphic to $C \oplus G$, then B is isomorphic to C. Elbert Walker, in his dissertation [7], and P. M. Cohn in [3], independently answered a question of Irving Kaplansky by showing that finitely generated abelian groups are cancellable in the category of abelian groups. The most interesting case is that of \mathbb{Z} , the additive group of integers. That's because finitely generated groups are direct sums of copies of \mathbb{Z} and of cyclic groups of prime power order, and a cyclic group of prime power order has a local endomorphism ring, hence is cancellable by a theorem of Azumaya [2].

It is somewhat anomalous that **Z** is cancellable. A rank-one torsion-free group A is cancellable if and only if $A \cong \mathbf{Z}$ or the endomorphism ring of A has stable range one [1, Theorem 8.12],[4]. (A ring R has **stable range**

one if whenever aR + bR = R, then a + bR contains a unit of R.) Thus for rank-one torsion-free groups, the endomorphism ring tells the whole story—except for \mathbf{Z} . It turns out that an object is cancellable if its endomorphism ring has stable range one. The proof of this in [6, Theorem 4.4] is constructive and works for any abelian category. It is also true, [6], that semilocal rings have stable range one, so Azumaya's theorem is a special case of this. In fact, that the endomorphism ring of A has stable range one is equivalent to A being substitutable, a stronger condition than cancellation [6, Theorem 4.4]. We say that A is **substitutable** if any two summands a group, with complements that are isomorphic to A, have a common complement. The group \mathbf{Z} is not substitutable: Consider the subgroups of \mathbf{Z}^2 generated by (1,0), (0,1), (7,3), and (5,2). The first and second, and the third and fourth, are complementary summands. The second and fourth do not have a common complement because that would require (a,b) with $a=\pm 1$ and $2a-5b=\pm 1$.

In this paper we will investigate whether \mathbf{Z} is cancellable in the (abelian) category $\mathcal{D}_T(\mathbf{Ab})$ of diagrams of abelian groups based on a fixed finite poset T with a least element. There is a natural embedding of \mathbf{Ab} into $\mathcal{D}_T(\mathbf{Ab})$ given by taking a group into the constant diagram on T with identity maps between the groups on the nodes. In particular, we can identify the group of integers as an object of $\mathcal{D}_T(\mathbf{Ab})$. As the endomorphism ring of any group G is the same as that of its avatar in $\mathcal{D}_T(\mathbf{Ab})$, a substitutable group is substitutable viewed as an object in $\mathcal{D}_T(\mathbf{Ab})$. However it turns out that \mathbf{Z} is not cancellable in $\mathcal{D}_T(\mathbf{Ab})$ where T is the linearly ordered set $\{0, 1, 2\}$.

This result has repercussions for the constructive theory of abelian groups. Because of it, we can conclude that Walker's theorem does not admit a constructive proof. In fact, it is not even provable when B and C are restricted to be subgroups of \mathbb{Z}^2 . It was the question of whether Walker's theorem had a constructive proof that initiated our investigation. You can think of a constructive proof as being a proof within the context of intuitionistic logic. Such proofs are normally constructive in the usual informal sense. Most any proof of Azumaya's theorem is constructive, so a constructive proof of the cancellability of \mathbb{Z} would show that you can cancel finite direct sums of finite and infinite cyclic groups.

As any homomorphism from an abelian group onto **Z** splits, Walker's theorem can be phrased as follows: If A is an abelian group, and $f, g : A \to \mathbf{Z}$ are epimorphisms, then $\ker f \cong \ker g$. The following theorem gets us part way to a proof of Walker's theorem.

Theorem 1 Let A be an abelian group and $f, g : A \to \mathbf{Z}$ be epimorphisms. Then $f(\ker g) = g(\ker f)$ so that

$$\frac{\ker g}{\ker f \cap \ker g} \cong f(\ker g) = g(\ker f) \cong \frac{\ker f}{\ker f \cap \ker g}$$

Proof. Consider the image I of the map $A \to \mathbf{Z} \oplus \mathbf{Z}$ induced by f and g. As f and g are epimorphisms, I is a subdirect product. Note that $f(\ker g) = I \cap (\mathbf{Z} \oplus 0)$ when the latter is viewed as a subgroup of \mathbf{Z} , and similarly $g(\ker f) = I \cap (0 \oplus \mathbf{Z})$. To finish the proof we show that if $(x,0) \in I$, then $(0,x) \in I$. As I is a subdirect product, there exists $n \in \mathbf{Z}$ such that $(n,1) \in I$. Thus $(0,x) = x(n,1) - n(x,0) \in I$.

Thus we get the desired isomorphism $\ker f \cong \ker g$ if $\ker f \cap \ker g = 0$ or if $f(\ker g)$ is projective. Classically, every subgroup of \mathbf{Z} is projective, so this constitutes a classical proof. Indeed, it is a classical proof that in the category of modules over a Dedekind domain D, the module D is cancellable [5].

2 The example

Our example lives in the category $\mathcal{D}_T(\mathbf{Ab})$ of diagrams of abelian groups based on the linearly ordered set $T = \{0, 1, 2\}$. The example shows that you can't cancel \mathbf{Z} in $\mathcal{D}_T(\mathbf{Ab})$.

The groups on the nodes will be subgroups $A_0 \subset A_1 \subset A_2 = \mathbf{Z}^3$ defined by generators:

$$A_0 = \begin{pmatrix} (1,3,0) \\ (3,1,0) \end{pmatrix} A_1 = \begin{pmatrix} (1,0,-24) \\ (0,1,8) \\ (0,0,64) \end{pmatrix} A_2 = \begin{pmatrix} (1,0,0) \\ (0,1,0) \\ (0,0,1) \end{pmatrix}$$

Note that (0, 8, 0), $(8, 0, 0) \in A_0$. The maps between these groups are inclusions. Define the maps $f, g : \mathbf{Z}^3 \to \mathbf{Z}$ by f(a, b, c) = a and g(a, b, c) = b. The maps f and g each induce maps from these three groups into \mathbf{Z} which give two maps from the diagram into the constant diagram \mathbf{Z} . We denote the kernel of the map f restricted to A_i by $\ker_i f$ and similarly for g. These kernels admit the following generators:

$$\ker_0 f = (0, 8, 0) \quad \ker_1 f = \begin{array}{c} (0, 1, 8) \\ (0, 0, 64) \end{array} \quad \ker_2 f = \begin{array}{c} (0, 1, 0) \\ (0, 0, 1) \end{array}$$

$$\ker_0 g = (8, 0, 0) \quad \ker_1 g = \begin{array}{c} (1, 0, -24) \\ (0, 0, 64) \end{array} \quad \ker_2 g = \begin{array}{c} (1, 0, 0) \\ (0, 0, 1) \end{array}$$

The diagrams $B = \ker f$ and $C = \ker g$ are clearly each embeddable in the diagram $\mathbf{Z} \oplus \mathbf{Z}$. That $B \oplus \mathbf{Z}$ is isomorphic to $C \oplus \mathbf{Z}$ follows from the fact that the diagram A can be written as an internal direct sum $B \oplus \mathbf{Z}$ and also as an internal direct sum $C \oplus \mathbf{Z}$. The generator of \mathbf{Z} in the first case is the element (1,3,0), in the second case (3,1,0).

Theorem 2 There is no isomorphism between ker f and ker g in $\mathcal{D}_T(\mathbf{Ab})$.

Proof. Suppose we had an isomorphism $\varphi : \ker f \to \ker g$. Looking at the isomorphisms at 0 and 2, there exist $e, e' = \pm 1$ and $x \in \mathbb{Z}$ so that

$$\varphi(0,8,0) = (8e,0,0)$$
 and $\varphi(0,0,1) = (x,0,e')$

Thus $\varphi(0,1,8) = (e+8x,0,8e')$. For (e+8x,0,8e') to be in $\ker_1 g$, we must have 8e'+24 (e+8x) divisible by 64. But 8e'+24 (e+8x) is equal to 8e'+24e modulo 64, and this is not divisible by 64.

The following result shows that we can't get an example that is a subobject of the diagram \mathbb{Z}^n using the linearly ordered set $T = \{0, 1\}$.

Theorem 3 Let $T = \{0,1\}$. In the category $\mathcal{D}_T(\mathbf{Ab})$, if A and B are subobjects of \mathbf{Z}^n , and $A \oplus \mathbf{Z}$ is isomorphic to $B \oplus \mathbf{Z}$, then A is isomorphic to B.

Proof. Write $A \subseteq \mathbf{Z}^n$ as $A_0 \subseteq A_1$. As A_1 is a finite-rank free abelian group, the situation $A_0 \subseteq A_1$ can be represented by an integer matrix whose rows generate A_0 . Using elementary row and column operations, we can diagonalize this matrix so that each entry on the diagonal divides the next (Smith normal form). Thus A is isomorphic to B exactly when the ranks of the free abelian groups A_1 and B_1 are equal, and $A_1/A_0 \cong B_1/B_0$. If $C = A \oplus \mathbf{Z}$ is isomorphic to $D = B \oplus \mathbf{Z}$, then the rank of $C_1 = A_1 \oplus \mathbf{Z}$ is equal to the rank of $D_1 = B_1 \oplus \mathbf{Z}$, so the rank of A_1 is equal to the rank of B_1 , and $A_1/A_0 \cong C_1/C_0 \cong D_1/D_0 \cong B_1/B_0$, so A is isomorphic to B.

This theorem leaves open the question of whether there is an counterexample of this sort using the poset that looks like a "V".

3 The Brouwerian counterexample

A Brouwerian example is an object depending on a finite family of propositions. The idea is that if a certain statement holds about that object, then some relation holds among the propositions. Thus a Brouwerian example is piece of reverse mathematics: the derivation of a propositional formula from a mathematical statement. For example, there may be just one proposition P and if the statement holds for that object, then $P \vee \neg P$ holds. Thus from the general truth of the statement we could derive the law of excluded middle, from which we would conclude that the statement does not admit a constructive proof. Our Brouwerian counterexample to Walker's theorem is based on the diagram of groups of the previous section.

Let P and Q be propositions. Let

$$A = \left\{ x \in \mathbf{Z}^3 : x \in A_0 \text{ or } P \land x \in A_1 \text{ or } P \land Q \right\}$$

where A_0 and A_1 are defined in the preceding section. The maps $f, g : \mathbf{Z}^3 \to \mathbf{Z}$ are defined as before by f(a, b, c) = a and g(a, b, c) = b.

Note that A is a discrete group (any two elements are either equal or distinct) as it is a subgroup of the discrete group \mathbb{Z}^3 .

Theorem 4 The groups $\ker f$ and $\ker g$ are isomorphic if and only if $P \vee P \Rightarrow (Q \vee \neg Q)$.

Proof. As before, we denote $A_i \cap \ker f$ by $\ker_i f$.

If P holds, then the isomorphism is induced by $\varphi(0,1,0)=(1,0,-32)$ and $\varphi(0,0,1)=(0,0,1)$. Suppose $P\Rightarrow (Q\vee\neg Q)$ holds. Define φ on $\ker_0 f$ by $\varphi(0,8,0)=(0,0,8)$. That's all we have to do unless we are given x that is not in $\ker_0 f$. If $x\in \ker_2 f$, and $x\notin \ker_0 f$, then P holds, hence either Q or $\neg Q$ holds. If Q holds, then the isomorphism is induced by $\varphi(0,1,0)=(1,0,0)$ and $\varphi(0,0,1)=(0,0,1)$. If $\neg Q$ holds, the isomorphism is induced by $\varphi(0,1,8)=(3,0,-8)$ and $\varphi(0,8,0)=(8,0,0)$.

Conversely, suppose φ is an isomorphism. If $\varphi(0,8,0) \neq (\pm 8,0,0)$, then P holds, so we may assume that $\varphi(0,8,0) = (8,0,0)$. To show that $P \Rightarrow Q \vee \neg Q$, suppose P holds. If $\varphi(\ker_1 f) \neq \ker_1 g$, then Q holds. If $\varphi(\ker_1 f) = \ker_1 g$, then Q cannot hold because that would give an isomorphism in the diagram category contrary to Theorem 2.

So if we could find a constructive proof that $\ker f$ and $\ker g$ were isomorphic, then we would have a constructive proof of the propositional form

$$P \vee P \Rightarrow (Q \vee \neg Q)$$
.

That means that this form would be a theorem in the intuitionistic propositional calculus. But then by the disjunction property, either P is a theorem, which it is not, or $P \Rightarrow (Q \vee \neg Q)$ is a theorem. In the latter case, substituting \top for P gives $Q \vee \neg Q$, the law of excluded middle, which is not a theorem.

The diagram example of the preceding section can itself be thought of as an object in a model of intuitionistic abelian group theory, and in this way directly shows that Walker's theorem does not admit a constructive proof, even for subgroups of \mathbb{Z}^2 .

4 Canceling Z with respect to subgroups of Q

We have seen that we can't cancel **Z** with respect to certain subgroups of $\mathbf{Z} \oplus \mathbf{Z}$. It is natural to ask what the situation is with respect to subgroups of **Z**. We give a constructive proof of the following theorem.

Theorem 5 Let B be an abelian group such that every nontrivial homomorphism from B to **Z** is one-to-one. If f is a homomorphism from $B \oplus \mathbf{Z}$ onto **Z**, then ker f is isomorphic to mB for some positive integer m. Hence if B is torsion free, then ker f is isomorphic to B.

Proof. Let s = f(0,1) and f_1 the restriction of f to B. As f is onto, we have $f_1(B) + s\mathbf{Z} = \mathbf{Z}$. If s = 0, then f maps B isomorphically onto \mathbf{Z} , and $0 \oplus \mathbf{Z}$ is ker f, in which case we can set m = 1. So we may suppose that s > 0. We will show that ker f is isomorphic to sB.

When is (b, n) in ker f? As $f(b, n) = f_1(b) + sn$, we see that a necessary and sufficient condition is that $f_1(b) \in s\mathbf{Z}$ and $n = -f_1(b)/s$. Thus ker f is isomorphic to $f_1^{-1}(s\mathbf{Z})$. As $f_1(B) + s\mathbf{Z} = \mathbf{Z}$, and $f_1(B)$ and $s\mathbf{Z}$ are ideals of \mathbf{Z} , it follows that $f_1(B) \cap s\mathbf{Z} = f_1(B) s\mathbf{Z} = sf_1(B)$. Thus

$$f_1^{-1}(s\mathbf{Z}) = f_1^{-1}(f_1(B) \cap s\mathbf{Z}) = f_1^{-1}(sf_1(B))$$

Clearly $f_1^{-1}(sf_1(B)) \supseteq sB$. Conversely, if $f_1(b) \in sf_1(B) = f_1(sB)$, then $f_1(b) = f_1(sb')$ so $b = sb' \in sB$.

Note that any torsion-free group B of rank at most one satisfies the hypothesis of the theorem. Also any group with no nontrival maps into \mathbf{Z} . Classically, this latter condition simply says that B has no proper \mathbf{Z} summands.

What other groups B allow cancellation of \mathbb{Z} ? It suffices that B be finitely generated. To see this, look at Theorem 1. If ker f is finitely generated, then g (ker f) is a finitely generated subgroup of \mathbb{Z} , hence is projective. From this argument it suffices that any image of B in \mathbb{Z} be finitely generated. Notice that subgroups of \mathbb{Z} need not have this property.

What about a direct sum of two groups that allow cancellation of \mathbf{Z} , such as a direct sum of two subgroups of \mathbf{Z} ?

References

- [1] ARNOLD, DAVID M., Finite rank torsion free abelian groups and rings, Lecture Notes in Mathematics 931, Springer, 1982.
- [2] AZUMAYA, GORO, Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt's theorem, Nagoya Math. J., 1 (1950), 117–124.
- [3] COHN, PAUL M., The complement of a finitely generated direct summand of an abelian group, *Proc. Amer. Math. Soc.*, **7** (1956), 520–521.
- [4] Fuchs, Laszlo and Frans Loonstra, On the cancellation of modules in direct sums over Dedekind domains, *Indag. Math.* **33** (1971), 163–169.
- [5] HSÜ, CHIN-SHUI, Theorems on direct sums of modules, *Proc. Amer. Math. Soc.*, **13** (1962), 540–542
- [6] Lam, Tsit Yuen, A crash course on stable range, cancellation, substitution, and exchange, math.berkeley.edu/~lam/ohio.ps
- [7] WALKER, ELBERT A., Cancellation in direct sums of groups, Proc. Amer. Math. Soc., 7 (1956) 898–902.