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SEPARATING FRAGMENTS OFWLEM, LPO, ANDMP

MATTHENDTLASS AND ROBERT LUBARSKY

Abstract. We separate many of the basic fragments of classical logic which are used in reverse construc-
tive mathematics. A group of related Kripke and topological models is used to show that various fragments
of the Weak Law of the Excluded Middle, the Limited Principle of Omniscience, and Markov’s Principle,
including Weak Markov’s Principle, do not imply each other.

§1. Introduction. At the beginning of the twentieth century, Brouwer identified
a number of constructively dubious principles, which Bishop later, in his 1967
monograph [2], termed omniscience principles. In the intervening years many new
(weaker) principles have been introduced and models have been given showing
the nonderivability of these principles in, for example, intuitionistic ZF set theory
(IZF) [7].
Omniscience principles are commonly used to show the independence of more
subject specific theorems: if a (classical) result constructively implies an omniscience
principle, then it cannot be proved using constructive techniques. By separating
different omniscience principles over IZF we make this task easier: if under the
assumption of a classical result together with an omniscience principle we can
derive a stronger omniscience principle, then we can still conclude that the classical
theorem is nonconstructive. More generally, implications among these principles
and theorems of mainstream mathematics have been studied for a long time. Often
this is the motivation for introducing these principles (some references being pro-
vided with the principles below), and often this study is done for foundational
reasons after the principles are already established (as, for instance, in [26], which
also includes variants that we do not examine here). A more general reason to do
this work is that the purpose of the study of logic is to clarify foundational prin-
ciples; certainly knowing when various combinations of such do and do not imply
others is a part of this.
In this paper we present many models, often related to each other, that separate
a large number of the omniscience principles defined in terms of binary sequences
and related principles. The genesis of this work was the first author’s question to the
second of whether Richman’s LLPOn hierarchy [23] could be separated, a question
about results. Since then, much interest has shifted to technique: could an argument
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for a simple case be extended to amore complicated case?How could amodel giving
a weak separation (that is, one in which a certain principle is not true but also not
false) be re-configured into one giving a strong separation (in which the principle
in question is false)? What has to be done to make DC (Dependent Choice) true?
We hope that some of the results are of wider interest, such as separations involving
a central, traditional axiom like Weak König’s Lemma, or a new axiom like Weak
Markov’s Principle. At the same time, the exposition has a strong orientation to
technique, often providing several proofs of the same theorem, in the spirit of a
saying we’ve heard and like, that it’s better to prove the same thing in five different
ways than to prove five different things the same way.
Turning now to the principles we will be studying, constructive mathematics is
often crudely characterized as mathematics without the law of excluded middle

� LEM: For any proposition A, either A is true or A is false,

and IZF is essentially the result of expunging LEM from ZF. Our goal is always to
end up with models satisfying IZF + Dependent Choice,

� DC: If a is a set, x0 ∈ a, S is a subset of a × a, and for each x ∈ a there exists
y ∈ a such that (x, y) ∈ S, then there exists a sequence (xn)n∈N in X such that
x0 = a and (xn, xn+1) ∈ S for each n,

which is more than sufficient to formalise Bishop’s constructive mathematics [2].
Since there is a double-negative translation of ZF into IZF, we lose nothing by
adopting ZFC as our meta-theory, and since many of the models we present make
use of ultrafilters this classical meta-theory is essential.
Many of the commonly occurring omniscience principles can be stated in terms
of binary sequences.We denote the space of infinite binary sequences, Cantor space,
by 2� and use decorations of α, � to represent elements of 2� . We reserve n,m to
represent natural numbers, and use i, j, k to range over bounded sets of natural
numbers.
Brouwer introduced the following three basic omniscience principles.

� TheLimited Principle ofOmniscience (LPO): For any binary sequenceα, either
α(n) = 0 for all n or there exists n such that α(n) = 1.

� TheWeak Limited Principle of Omniscience (WLPO): For any binary sequence
α, either α(n) = 0 for all n or it is not the case that α(n) = 0 for all n.

� The Lesser Limited Principle of Omniscience (LLPO): For any binary sequence
α with at most one nonzero term, either α(n) = 0 for all even n or α(n) = 0
for all odd n.

If we add countable choice to our system, then LLPO is equivalent to weak König’s
lemma:1

� WKL: Every infinite decidable binary tree has an infinite branch.

In [23] Richman defined a hierarchy of principles LLPO� (� ∈ �+1, � � 2) related
to LLPO:

1Ishihara has shown that weak König’s lemma is equivalent to LLPO plus Π01-AC�,2 over a weak
constructive base system [11].
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� LLPO� : Let (Pi )i<� be a decidable partition of � into blocks of size �, and let
α be a binary sequence with at most one nonzero term. Then there exists k < �
such that α(m) = 0 for all m ∈ Pk .

By glueing together blocks from partitions, we see that LLPO� implies LLPO�′
whenever � < �′. If � = n ∈ �, then without loss of generality we restrict our
consideration to the natural n-partition of �: Pi = {mn + i : m ∈ �}.
LLPO is just the restriction of De Morgan’s law—for any propositions A,B, if

¬(A∧B), then ¬A or ¬B—to Σ01-formulas. De Morgan’s law is equivalent to LEM
for negative formulas: the Weak Law of Excluded Middle

� WLEM: for any proposition A, either ¬A or ¬¬A.
The LLPOn hierarchy can be formed in a similar manner as the restrictions of a
family of weakenings of WLEM:

� WLEMn : ¬
∨
i,j<n,i �=j Ai ∧ Aj −→

∨
i<n ¬Ai ;

LLPOn is the restriction ofWLEMn to Σ01-formulas.We candefine a similar principle
WLEM� by quantifying over the natural numbers.
Another principle commonly considered in constructive reverse mathematics is
Markov’s Principle:

� MP: If it is impossible for all terms of α to be zero, then there exists an n such
that α(n) = 1.

Markov’s Principle represents unbounded search and is accepted by some practi-
tioners of constructivemathematics, notably those of theRussian school of recursive
mathematics. There are two standard weakenings of Markov’s Principle, Weak and
Disjunctive MP.

� WMP:
∀α [ ∀� (¬¬∃n (�(n) = 1) ∨ ¬¬∃n (α(n) = 1 ∧ �(n) = 0))→ ∃n α(n) = 1].

� MP∨: If α has at most one nonzero term and it is impossible for all terms of α
to be zero, then either all even terms are zero or all odd terms are zero.

Often MP and its variants are stated in terms of real numbers, instead of binary
sequences. For instance, WMP in this form is

∀a ∈ R (∀x ∈ R (¬¬(x < a) ∨ ¬¬(0 < x))→ a > 0).
The binary and real formulations are equivalent with a small amount of choice
(weak countable choice suffices). The topological model over R, with the standard
topology, shows that some choice is necessary, since MP for binary sequences holds
there but MP for reals does not.
Markov’s Principle is equivalent to the conjunction of WMP and MP∨ [10, 17].
Finally, we shall also consider the generalisations MP∨n and MP∨� of MP∨

corresponding to LLPOn and LLPO� .
It should bementioned, even if only briefly, thatmany of these principles havebeen
studied from a classical, computational point of view. For instance, the unsolvability
of the halting problem shows the computational failure of a uniform version of
LEM, and WKL, while studied here, is even more central in Reverse Mathematics
(see for instance [25]). There have also been such studies from the point of view of
Weihrauch reducibility, includingLLPOand its hierarchy, our backbone [3,4,18,32].
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1.1. Summary. The following diagram summarizes the known (to us) relation-
ships, over IZF, among the principles we have introduced. The two-headed arrows
are bi-implications, and the single arrows are strict, as either proven in this paper
or already known.
We summarize briefly, often with well-known constructions, or give references to
the reasons for the nonreversal of the black arrows, working from left-to-right in the
diagram. Please note that we are not claiming that the proofs or arguments given are
the best, or the simplest, or the first, or the canonical ones in some way. We merely
want to demonstrate all these nonimplications, preferably in a not too difficult way.
An example of a model of WLEM + ¬LEM is any (nontrivial) Kripke model over
a linear order with no last element. The topological model over R satisfies LPO
+ ¬LEM. In fact, any (nontrivial) Kripke model over a linear order with no last
element and which contains the standard natural numbers (such as the full model
over the partial order) satisfies both WLEM and LPO and falsifies LEM. A quite
different technique to separate LPO from LEM is realizability [21]. LLPO and
WKL are separated in Lifschitz realizability [5]. Kleene’s number realizability K1
separates MP and LLPO� [23], giving a whole column of nonreversals; we give a
very different model of the same separation below (Theorem 5.8).
The parallel black and red arrows are because the independence in question has
already been shown, but over theories of a different nature from IZF. Kohlenbach
[1,12–14] achieves all of the nonreversals so indicated, and a lot more, using various
realizabilities. The difference in all of these cases from our context is that the models
are all of higher-type arithmetic, the higher types being function spaces. A clear
difference from IZF is that there are no power sets and no transfinite iterations.

Figure 1. Fragments of LEMwith all implications, over IZF, indicated.
Red arrows correspond to separations given in this paper, black and blue
arrows to those previously known.
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Amore subtle distinction is the role of Comprehension. In the setting of functionals,
a subset is given by a 0-1-valued function. So Comprehension for a property gives
Excluded Middle for that property. Hence the amount of Comprehension present
in these models is of necessity limited (in the cases at hand, typically to negated
formulas or ∃-free formulas). In contrast, IZF has full Comprehension, although
its consequences are less weighty. Besides all that, the methods in this paper are so
completely different from the earlier realizabilities that we’d want them to get an
airing anyway.
For the blue arrows, the equivalence of LPO with WLPO + MP is trivial. It is
easy to see that LLPOwith Countable Choice is enough to yieldWKL; Ishihara [11]
has identified exactly the amount of choice needed and shown that to follow from
WKL, effectively decomposing WKL into a choice and an omniscience principle.
The equivalence ofMP withWMP+MP∨ is in [17], notwithstanding the facts that
all of those principles have different names there, and all are presented in their real
number (as opposed to their binary) versions.With sufficient Choice, those versions
are of course equivalent, but we would like to see the equivalence of those principles,
as stated here (i.e., in terms of binary sequences), without using any Choice. This
was done in [10], and with the same names as here to boot, albeit withMP∨ phrased
differently. Because of that difference, and because the proof there is rather terse,
we give the details here. So suppose that not all terms of α are 0. By WMP, we will
be done if we can show α is pseudopositive (i.e., WMP’s hypothesis). So let � be
arbitrary. Define � as follows. While generating the values of α and � , let � continue
taking the value 0, until the least n is reached (if ever) with either �(n) or α(n) being
1. If �(n) = 1 then �(2n) = 1, else �(2n + 1) = 1, after which � always has value
0. We would like to apply MP∨ to �. By construction, � has at most one nonzero
term. If � were always 0, then so would be α (because if α(n) = 1 then � takes on
the value 1 at or before 2n + 1). That contradicts the assumption on α, so � is not
always 0. By MP∨, either �’s even or odd terms are 0. Suppose the former. Working
toward a contradiction, suppose there is no n with α(n) = 1 and �(n) = 0. If there
were an n with �(n) = 1 then for some k ≤ n we have �(2k) = 1, which can’t
happen. So � is always 0. Hence there is no n with α(n) = 1. But this contradicts
the choice of α. So the hypothesis of WMP is satisfied in this case. Now suppose all
of �’s odd terms are 0. Working toward a contradiction, assume � is always 0. But
then all of �’s even terms would be 0 too, which we already saw cannot happen. So
the hypothesis of WMP is satisfied in this case. This suffices.
For the nonreversal of the red arrows over IZF + DC, we refer the reader to
Figure 2. By Theorem 4.1, none of the arrows from the WLEM column to the
LLPO column reverse. By Theorems 5.1 and 5.6, WMP and MP∨� are unprovable;
Theorem 5.1 also shows that MP∨ does not imply MP and that WLPO does not
imply LPO.Theorem5.7 shows thatMP∨� does not imply ∃n MP∨

n , andTheorem6.1
that WKL does not imply WLPO. That WMP does not show MP follows from
Theorem 5.6, and all of the other arrows are shown not to reverse by Theorem 5.2.
By a nonreversal of the implication A→ B over IZF + DC, we mean a model of
IZF +DC in which B is true andA is false. Ultimately that is what is shown in each
case. However, we also present many partial nonreversals along with way, just for
the interest of the models themselves. For instance, in some models DC is false, and
in others we just don’t know. Also, some of the separations are weak as opposed to
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Figure 2. The nonderivabilities that give all the nonreversals among the
fragments of LEM we study here.

strong separations. In a weak separation, A is not true, but also not false; rather,
¬¬A holds. In a strong separation, A is false, meaning ¬A holds.

§2. Topological models. Many of the models we present are topological models.
Although long known [9], they are not so widely understood, and so we summarize
here the basics, as well as some particular results we will need.
Topological models are Heyting valued models where the complete Heyting alge-
bra is the lattice of opens TX of a topological space X . Meet and join in TX are
given by intersection and union, respectively, while the psuedo-complement → is
defined by

U → V ≡ (−U ∪ V )◦,

where −U denotes the complement of U in X and S◦ denotes the interior of S.
The full topological model over X consists of the class of names or terms, defined
inductively by

Vα(X ) = P
(⋃

{V�(X )× TX : � ∈ α}
)
,

V (X ) =
⋃

α∈ORD
Vα(X ).

Given � ∈ Vα(X ), the meaning of 〈�,O〉 ∈ � is that O is the degree of truth, or
truth-value, of � being in �. (Of course, the ultimate value of � ∈ � might be greater
than O, depending on what else is in �.) The idea of the full model is to throw in
absolutely everything you can.Wewill have occasion to look at submodels of the full
model. An embedding ·̌ of the ground model V into V (X ) is defined inductively by

ǎ = {< b̌,X >: b ∈ a}.
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The truth value of any proposition A, with parameters from V (X ), is an open
subset of X and is denoted by �A�. To say that a proposition A is true, or satisfied,
in a topological model MX over X means �A� = X , otherwise A is said to fail in
MX . Being false in MX is a stronger property: A is said to be false in MX if MX
satisfies ¬A, or equivalently �A� = ∅. We freely switch between truth value notation
�·� for topological models and forcing notation: a point x ∈ X forces a formula A,
written x � A, if and only if x ∈ �A�, and, for an open subset U of X , U � A if
and only if U ⊂ �A�.
A particularly important object, the generic, in a topological model MX is

described by the name
G = {< Ǔ ,U >: U ∈ TX }.

The generic gives a new element of the topological space over which we are
forcing, and is characterised by the equation

U � Ǔ ∈ G

for all U ∈ TX .
See [9] for an introduction to topological models of a constructive formulation of
second order arithmetic. Topological models preserve IZF; that is, IZF proves that
the full topological model satisfies the axioms of IZF.
We will have need of two simple and well-known observations, summarized in
the next lemma.

Lemma 2.1. Let X be a topological space, x a point of X , and U an open subset
of X .

1. If {x} is open, then x � LEM .
2. U � ¬¬A if and only if {x ∈ X : x � A} is dense in U .
Proof. The second part of the lemma is just an unpacking of definitions. To see
(1), note that x � ¬A if and only if there is a neighbourhood U of x such that no
point of U forces A which occurs precisely when x �� A. �
The next result is used to show that most of the topological models we present
satisfy DC. A topological space X is dim-zero-dimensional, or of covering dimension
zero, if for every open cover (Oi)i∈I of X there exists an open partition (O′

j)j∈J of
X such that for each j ∈ J , O′

j ⊂ Oi for some i ∈ I . We call (O′
j)j∈J a partition

refinement of (Oi)i∈I . We can always replace the partition refinement (O′
j)j∈J of

(Oi)i∈I by a partition refinement indexed by |TX | simply by bulking out (O′
j)j∈J

with copies of the empty set.

Proposition 2.2. If X is dim-zero-dimensional, thenMX � DC.
Proof. Suppose, without loss of generality, that

X � ∀s ∈ S ∃t ∈ S (ϕ(s, t)) ∧ s0 ∈ S.

Then, whenever X � s ∈ S, {�ϕ(s, t)� ∩ O : 〈t,O〉 ∈ S} is an open cover of X .
We inductively construct O�, t� (� ∈ S<�) such that for each � ∈ S<� and each
n ∈ �
(1) {O� : |�| = n} is an open partition of X ;
(2) O�
〈t,O〉 ⊆ �ϕ(t� , t�
α)�.
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We begin by settingO〈〉 = X and t〈〉 = s0.Now supposewe have constructedO� and
t� for all� ∈ Sn andfixa string� inSn . Let (O′

�,〈t,O〉)〈t,O〉∈S beapartition refinement
of {�ϕ(t� , t)� ∩ O : 〈t,O〉 ∈ S}. For each 〈t,O〉 ∈ S we set O�
〈t,O〉 = O� ∩O′

〈t,O〉
and t�
〈t,O〉 = t. This completes the inductive construction.

Define a name

f = {< pair(ň, t�),O� >: n ∈ �, � ∈ Sn},
where pair(a, b) is a term for what is intended to be the ordered pair of a and
b: {〈{〈a,X 〉}, X 〉, 〈{〈a,X 〉, 〈b,X 〉}, X 〉}. By (1), X forces that f is a sequence in
S, and by (2)

X � ∀n ∈ � ϕ(f(n), f(n + 1)). �

§3. Kripke models. Many of the remaining models are Kripke models. The con-
structions used bear a family resemblance. In an attempt to economize, we present
here a general framework, which completely suffices for some of the models. Then
we present a rather more particular construction, which suffices for most of the rest
of the models.
Let P be a partial order. Suppose that to each node � ∈ P there is an associated
model M� of ZFC. Also suppose that whenever � ≤ � there is an elementary
embedding f�� : M� → M� . (Whenever � = �, f is the identity.) Moreover, the
system of f��’s coheres: f�� ◦ f�� = f��. In the following, we will usually drop the
subscripts to f�� and let f act as a polymorphic embedding. We also assume that
the system P≥� , with the associated assignment ofM� to � whenever � ≥ �, is in
(well, more accurately, definable over)M� .
With this backdrop, we can now define the full model over this system. The
objects at node � are defined withinM� inductively through the ordinals α ofM� .
Assume inductively that we have a set K�� of objects of rank � (� < α) at �, along
with transition functions k : K�� → K�

f(�). (It will be clear that the action of k
does not depend on the choice of � , and so there is no need to distinguish various
k’s dependent on the choice of � . In some sense k does depend on �, but again
we will usually drop that from the notation and allow k to be polymorphic.) By
elementarity, we also have the correspondingK�� for any � > � and � < f(α). Then
an object of K�α will be a function g such that:
• dom(g) = P≥� ,
• g � P≥� ∈M� ,
• g(�) ⊆

⋃
�<f(α)K

�
� , and

• if h ∈ g(�) and � < � then k��(h) ∈ g(�).
Let k��(g) be g � P≥�. This allows the inductive construction to continue through
the ordinals.
Let the objects at node � be the functions g that are inK�α for any ordinal α from
M� . Say � |= g ∈ h iff g ∈ h(�), and � |= g = h iff g = h. This gives a structure for
the language of set theory at every node. Let the action of the transition function k
be domain restriction, as with any of the partial k’s from the construction.
Theorem 3.1. The full model satisfies IZF.
Proof. Empty Set: Let g be the function (with appropriate domain) that always
returns the empty set.
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Infinity: Within anyM� , one can define inductively on n ∈ � an element n� of the
full model. To start, 0� is the set satisfying the Empty Set Axiom from above. Given
m� for m < n, let n�(�) be {k��(m�) | m < n}. Notice that k��(m�) = m� . Let ��
be such that ��(�) = {m� | m ∈ �M�}. Then �� suffices.
Pairing: Given g and h at node �, the desired pair is the function which, at node �,
yields the set {k(g), k(h)}.
Union: Given g at node �, let h be such that h(�) =

⋃
{ĝ(�) | ĝ ∈ g(�)}.

Extensionality: Because equality is taken to be actual equality, it is easy to see that
equal sets have the same members. On the other hand, if two sets are forced at a
node to have the same members, then they are literally equal as functions from that
node on. By Extensionality in the ambient universe, they are then equal.

∈-Induction: We must take some care here, because we did not assume that anyM�
is well-founded. So suppose we’re dealing with a counter-example to ∈-Induction:
� |= ∀x(∀y ∈ x φ(y) → φ(x)), yet � �|= ∀x φ(x). Then for some � ≥ � there is a
g ∈ K�, � �|= φ(g). By the inductive hypothesis, � �|= ∀y ∈ g φ(y). Hence there is a
� ≥ � and a term h ∈ K� with � |= h ∈ g, yet � �|= φ(h).
Returning now to �, the situation just described is a statement aboutM� :M� |=
“There is a partial order Q with bottom element ⊥, and a system of models with
elementary embeddings, starting with M⊥ = V , such that the induced full model
does not satisfy ∈-Induction; moreover, there is such an example with a specific
counter-example g already in K⊥.” Because M� is a model of ZFC, there is such
a model inM� with such a g of least possible rank, say α, among all such models.
Within that model, by the considerations above, there is a node � ≥ ⊥ and an
h ∈ K� with � |= h ∈ g, yet � �|= φ(h). So M� models that h is also a specific
counter-example to ∈-Induction, and of rank strictly smaller than that of g. But by
elementarity, withinM� , it is f(α) that is the least rank of such a counter-example.
This is a contradiction. So there is no counter-example to ∈-Induction.
Power Set: Let g ∈ K� . At any node � ≥ �, if � |= h ⊆ g, then h is (forced at � to
be) a function with domain P≥� such that h(�) ⊆ g(�) (of course, also respecting
the other condition on being in K�). In fact, any such h at � ≥ � can be taken to
be an object at �, by letting h(�) be the empty set whenever � does not extend �.
Noticing there are only set many such h’s, the set of all of them is the power set of g.

Separation: Given φ and g at �, let h ∈ K� be h(�) = {g ′ ∈ g(�) | � |= φ(g ′)}.
Replacement \ Collection \Reflection: While those three axiom schemas are equiv-
alent classically, they are apparently of strictly increasing strength constructively.
That is, Friedman–Scedrov [8] showed that Replacement does not imply Collection,
and while a proof is wanting, presumably Collection does not imply Reflection.
(The converse implications are all soft proofs.) Typically IZF is taken to be the
theory with Collection. In fact, in our setting it is easy to see that Reflection holds
true. Working in V = M� , by Reflection there, let Vα ≺Σn V . Cutting off the con-
struction of the model at α, which is K�α at � and K

�
f(α) at any other �, yields a Σn

substructure of the entire model, in the sense that any property of K� which is Σn
expressible in the ambientM� reflects. �
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For the second construction, start with a partial order P which is a tree of height
�. For notational convenience, we may as well take P to be a set of strings, closed
under truncation (so 〈〉 is the root) and extension inP as a partial order is the sameas
string extension. Assume that, as before, there is an assignment of a ZFC-modelM�
to each node �, with (polymorphic) elementary embeddingsf. For convenience, we
takeM〈〉 to be V . This time, the tree P and the assignment are moreover assumed
to be uniform, as follows. To define what it is for P to be uniform, let the extensions
of �, ext� , be the strings � of length 1 such that �
� ∈ P (which are exactly what
yield �’s children). Then for � ≤ �, ext� = f(ext�). For instance, P could be the
full binary tree, and then each ext� would be 2, or {0, 1}. Another example more
akin to Baire space would be ext� = �M� . For the assignment ofM� to each � to
be uniform means that, for � ≤ �, the definition of the assignment � �→ M�
� for
� ∈ ext� is the same definition as for � �→M�
� for � ∈ ext� (where, of course, any
parameters are translated viaf). For instance, ifM0 is an ultrapower ofM〈〉 via the
ultrafilter U , thenM�
0 is an ultrapower ofM� via f(U). Also, ifMn (n a natural
number) is the n-fold iteration of the ultrapower construction applied toM〈〉 based
on the ultrafilter U , then the same holds forM�
n relative toM� andf(U), even for
n nonstandard, where the non-standard-length iteration is as defined inM� .
With this set-up, we can define the immediate settling model over this system. The
idea is that a set can change arbitrarily from a node to an immediate successor,
just as above, but then it can’t change anymore, instead needing to settle down. Of
course, the notion of not changing is mediated by the embeddings f.
More precisely, the universe K� at node � will consist of functions g such that:

• the domain of g, dom(g), consists of 〈〉 and all of 〈〉’s immediate successors,
the strings in P of length 1 (for which we use the variable �),

• g ∈M� and g(�) ∈M�
� ,
• inductively, g(〈〉) ⊆ K� and g(�) ⊆ K�
� ,
• if h ∈ g(〈〉) then k(h) ∈ g(�), where k is the inductively defined transition
function from K� to K�


� , and
• if h ∈ g(�) then k(h) ∈ f(g(�)), where k is the transition function from K�
�
to K�


�
� and f is the elementary embedding fromM�
� toM�
�
�.

To define the transition function k from K� to some extension of �, it suffices to
define those k’s fromK� to an immediate extensionK�


� , since transition functions
to nonimmediate extensions can be taken to be compositions of functions to imme-
diate extensions. So for g ∈ K� and � of length 1, let k(g)(〈〉) be g(�), and for � of
length 1 let k(g)(�) bef(g(�)), wheref is the elementary embedding fromM�
� to
M�
�
�. We leave it to the reader to show that k(g) ∈ K� , as well as the following.
Lemma 3.2. Suppose that g ∈ K� is such that g(�) = f(g(〈〉)). (This is the case,
for instance, when g is in the image of k.) Then k(g) = f(g).
Let � |= g ∈ h iff g ∈ h(〈〉), and � |= g = h iff g = h.
Theorem 3.3. The immediate settling model satisfies IZF.
Proof. Empty Set: Let g be the function (with appropriate domain) that always
returns the empty set.

Infinity: Within V = M〈〉, one can define inductively on n ∈ � an element n〈〉 of
this model, which will also be the nth successor of 0 at any other node too. To start,
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0〈〉 is the set satisfying the Empty Set Axiom from above. Given m〈〉 for m < n, let
n〈〉(〈〉) = n〈〉(�) be {m〈〉 | m < n}. Let �〈〉 be such that �〈〉(〈〉) = {n〈〉 | n ∈ �},
and �〈〉(�) = f(�〈〉(〈〉)). Then �〈〉 suffices at the node 〈〉.
Pairing: Given g and h at node �, the desired pair is the function which, at node �,
yields the set {k(g), k(h)}. To show that this set is inK� , most of the properties are
simple; for the last, use the lemma before this theorem.

Union: Given g at node �, let h be such that h(�) =
⋃
{ĝ(〈〉) | ĝ ∈ g(�)}.

Extensionality: Because equality is taken to be actual equality, it is easy to see that
equal sets have the same members. On the other hand, if two sets are forced at
a node to have the same members, then they are literally equal as functions. By
Extensionality in the ambient universe, they are then equal.

∈-Induction: Because of the uniformities and simplicities in the current set-up, this
proof can proceed by consideration of only this model, as opposed to last time.
So suppose ∈-Induction fails: � |= ∀x(∀y ∈ x φ(y) → φ(x)), yet � �|= ∀x φ(x).
Therefore, for some � ≥ � there is a g ∈ K�, � �|= φ(g).
First we’re going to consider the simple case when there is such a � which strictly
extends �. The advantage here is that, at �, “φ” is really k(φ), meaning that the
parameters are actually of the form k(g), for g an original parameter of φ at �. That
means, by the earlier lemma, that with reference to any extension � of �, k(φ) =
f(φ). Working inM� , let g be a set of least rank α such that � �|= φ(g). Anything
forced at � to be a member of g has smaller rank, and so is forced at � to satisfy φ.
Also, anything forced at any � > � to be a member of k(g) has rank less thanf(α).
By elementarity, inM�, if h has rank less thanf(α) then � |= f(φ)(h). As remarked
above, f(φ) = k(φ), so if � |= h ∈ k(g), then � |= φ(h). So � |= ∀y ∈ g φ(y),
hence by the inductive hypothesis � |= φ(g), contrary to the choice of g.
So there is no such �; hence, if � > �, then � |= ∀h φ(h). Let g be of minimal rank
such that � �|= φ(g). If � |= h ∈ g then h has smaller rank than g and so � |= φ(g).
If � > � and h ∈ K� then as already observed � |= φ(h). So � |= ∀y ∈ g φ(y),
hence by the inductive hypothesis � |= φ(g), contrary to the choice of g.
Power Set: This is likely the most interesting axiom to check. After all, any alleged
power set must settle down after one step through P , yet a possible subset might
show up later which then has its own step in which to settle down. Here we present
a general proof; it might help the reader to look Model 5, where we work through
the most basic example of the Power Set Axiom in detail.
Let g ∈ K� . Let ℘(g)(〈〉) consist of all functions h ∈ K� such that h(〈〉) ⊆ g(〈〉)
and h(�) ⊆ g(�). Also, ℘(g)(�) consists of all h ∈ K� such that h(〈〉) ⊆ g(�) and
h(�) ⊆ f(g(�)). Note there are only set-many such functions. It is an unenlighten-
ing technical exercise to show that℘(g) ∈ K� . Then℘(g) is as desired: if � |= h ⊆ g,
then h ∈ ℘(g)(〈〉) by construction, and similarly for one-step extensions �
�; for
longer � > �, it essentially comes down to elementarity.

Separation: Given φ and g at �, let h ∈ K� be h(〈〉) = {g ′ ∈ g(〈〉) | 〈〉 |= φ(g ′)}
and h(�) = {g′ ∈ g(�) | � |= φ(g ′)}.
Replacement \ Collection \ Reflection: As in the previous theorem, it is easy to see
that Reflection holds true. Working in V =M� , by Reflection there, let Vα ≺Σn V .
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Cut off the construction of the model at α. That is, let K(〈〉) be K�α and K(�)
be K�


�
f(α). This yields a Σn substructure of the entire model, in the sense that any

property of K� which is Σn expressible in the ambientM� reflects. �

§4. LPO and WLEM.
Theorem 4.1. Over IZF + DC, LPO does not imply WLEM� .

Proof. We give several constructions.

Model 1: This first model has the benefit of being well-known. It has the drawback
of falsifying DC.
Consider the full topological modelMR2 over R2. If x forces that � is an infinite
binary sequence, then some connected neighbourhoodO of x forces the same. Then
for each n, O is the disjoint union of ��(n) = 0� ∩ O and ��(n) = 1� ∩ O, and so
either O ⊂ ��(n) = 0� or O ⊂ ��(n) = 1�. Thus O forces � to be a ground model
sequence and hence, applying LPO at the meta-level, either x � ∀n �(n) = 0 or
x � ∃n �(n) = 1.
We show that (0, 0) �� WLEM� . Since there is nothing special about (0, 0), it
follows thatMR2 � ¬WLEM� . For each n ∈ � set

Sn =
{
x ∈ R2 : x �= 0 ∧ 1

�
cos−1

(
x · (0, 1)
||x||

)
∈
(
1− 1/2n, 1− 1/2n+1

)}
;

that is, take a countable sequence of disjoint wedges in the upper half-plane
with vertex the origin. Let An be the statement 0̌ ∈ {< 0̌, Sn >}; viewing
Sn as a truth value, An means “Sn is true.” Since the Sn are mutually disjoint
�∃n,m (n �= m ∧ An ∧ Am)� = ∅, so R2 � ¬∃n,m (n �= m ∧ An ∧ Am). However,
since (0, 0) is in the closure of each Sn , (0, 0) cannot force any An to be false, and
hence does not force WLEM� .

Model 2: The most basic models separating two principles are models in which
the weaker principle is true while the stronger principle is not satisfied, as opposed
to being false—we call theseweak separations. Thismodel is such a weak separation.
It has the benefit of satisfying DC.
Let N+ be N ∪ {∗}, with the discrete topology on N and the only neighborhood
of {*} being the whole space. Then the full topological model of N+ is the same
thing as the full Kripke model on the system with the partial order having * as the
bottom node and its immediate successors n (n ∈ N), and V at each node with
elementary functions the identity. If ∗ |= α is a binary sequence, then using LPO in
the meta-theory either ∗ |= α(n) = 1 for some particular n, or ∗ |= α(n) = 0 for
all n, which fact persists to all the successor nodes. LPO holds at the other nodes
because they are terminal nodes and so classical logic holds there. DC holds at
all nodes using DC in the meta-theory. WLEM� fails: letting 0n ⊆ 1 be such that
k |= 0 ∈ 0n iff k = n, the statements “0 ∈ 0n” are pairwise incompatible yet none
are false at *.

Model 3: Of course, while WLEM� is not true in the model above, it is also not
false, because full classical logic holds at the terminal nodes. In order to get a strong
separation, one in whichWLEM� is false, wemust iterate the previous construction.
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Consider the partial order N<N, ordered by end-extension, with V at each node
and the identity for the embeddings. Take the full Kripke model over that p.o. Then
DCandLPOhold at each node as above, andWLEM� fails at each node as above. �

§5. Markov’s principle. The next batch of models has to do with falsifying MP
and its fragments, sometimes while retaining other parts of it.
Since MP has been so prominent for so long, it’s no surprise that there have
already beenmodels developed thatmake it false. Suchmodels have been of all sorts:
topological [15, 19], Beth [6], realizability [20, 27], a mix [31]. Much of the earlier
interest came from the incompatibility of MP with Kripke’s Schema. That is, MP +
KS proves full Excluded Middle ([29], p. 237), which was enough to stop Brouwer
right there, and with any amount of continuity proves an outright contradiction.
So some of the earlier falsifications of MP were almost accidental by-products of
modeling KS plus continuity. Perhaps surprisingly, the most prominent model of
Brouwer’s intuitionism, Kleene’s functional realizability K2, actually satisfies MP
(see [28], p. 428).
Eachmodel falsifyingMPof necessity provides one of the separations in Figure 2.
The thing is, we don’t know which. These fragments of MP have been less studied,
and so the original authors did not concern themselves with which of them held
in their models. It would be interesting to see what holds where. In what follows,
we present instead what believe are new models, in part to have some more models
in the literature, in part because this is how we view these separations, and in part
because it’s easier this way.

5.1. Weak Markov’s principle.
Theorem 5.1. Over IZF+DC, WLEM does not imply WMP.
Proof. Model 4: This is only a weak separation, and may not even satisfy DC.
Let f : V →M be an elementary embedding of the universe of sets V into a model
M with nonstandard integers. For instance,M could be an ultrapower of V using
a nonprincipal ultrafilter U on �. Let P be the two-node partial order with bottom
node ⊥ and top node �. Let M⊥ be V and M� be M . Consider the full Kripke
model over that system.
WLEM is true because the partial order is linear. WMP fails by considering at⊥
a binary sequence α which always takes on the value 0 at all standard places and
has a 1 in a nonstandard place. The hypothesis of WMP holds: given any � , either
� |= ∃n �(n) = 1, thereby satisfying the first disjunct, or it doesn’t, forcing � to
be the 0 sequence and thereby satisfying the second disjunct. But the conclusion of
WMP fails at ⊥.
Model 5: To get a strong separation, still potentially without DC, we can simply
iterate the construction from above. So let P be �. Let M0 be V , M1 be M , and
letMn+1 be defined fromMn the wayM was defined from V . For instance, ifM is
the ultrapower of V via the ultrafilter U , thenMn+1 is the ultrapower ofMn built
within Mn via f(U), where f is the (polymorphic) elementary embedding. Take
the immediate settling model over this system.
WLEM and WMP stand and fall for the same reasons as above.
As promised (during the proof of IZF for the immediate settling model), we
provide a central example of Power Set here, namely of 1, a.k.a. {0}. At any node,
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1 viewed externally has three subsets: 0 = ∅, 1 itself, and the set that now looks
like 0 but at the next node will be 1, which we will call 1�. So P(1) is given by
P(1)(⊥) = {0, 1, 1�}, and P(1)(�) = f(P(1)(⊥)). So while the “three” members
at ⊥ collapse to two at �, a new third member re-appears.
Model 6: This is a weak separation in which DC holds. The key idea of many of
the following separation theorems is contained in this construction, which is a full
topological model.
The points of the topological space are the natural numbers with an extra point
at infinity:X = �∪{∗}. To define the topology on X take a nonprincipal ultrafilter
U on �. Define a topology TX on X by taking
� ∅ ∈ TX
� {k} ∈ TX for each k in �,
� u ∪ {∗} ∈ TX for each u ∈ U ,
and closing under union; for singleton opens, we write k in place of {k}.
The intuition is as follows. Interpret the elements of X as binary sequences with
at most one nonzero term: k ∈ � corresponds to the sequence αk with a unique
1 in the kth position, and ∗ corresponds to the constant zero sequence α∗. So the
generic is a binary sequence αG , with at most one nonzero term. Then k � αG = α̌k
and u ∪ {∗} � αG(n) = 0 for each n /∈ u, since no extension of u ∪ {∗} forces
αG (n) = 1. Note that for each n ∈ � since U is a nonprincipal ultrafilter there is a
u in U such that n /∈ u and so u ∪ {∗} � αG(n) = 0. Hence, inMX , αG is indeed a
binary sequence with at most one nonzero term.
We claim that the full topological modelMX over (X,TX ) satisfies WLEM and
DC, and does not satisfy WMP.
ForWLEM, letAbe an arbitrary formula. Since isolated points behave classically,
we need only give a neighbourhood of ∗ which forces ¬A ∨ ¬¬A. Let

X0 = {k ∈ � : k � ¬A} and
X1 = {k ∈ � : k � A}.

Since the isolated nodes behave classically, � = X0 ∪ X1 and so either X0 ∈ U
or X1 ∈ U . We show that in the former case, X0 ∪ {∗} � ¬A and in the latter
X1 ∪ {∗} � ¬¬A. In the first case, every extension O of X0 ∪ {∗} can be extended
to k for some k ∈ X0. Since such a k forces ¬A, no extension of X0 ∪ {∗} can force
A; thus X0 ∪ {∗} � ¬A. The second case is similar: any extension of X1 ∪ {∗} can
be further extended to some k forcing A, so no such extension can force ¬A.
As for dependent choice, since {k} is open for each k ∈ �, X is dim-zero
dimensional and hence, by Lemma 2.2,MX satisfies DC.
While the failure of Weak Markov’s Principle is stronger than that of simple
Markov’s Principle, the latter is easier to understand andmore common, so it might
be instructive to see first why MP fails for the generic αG . Given an open set in X
we can always extend to a singleton and so, since k � αG(ǩ) = 1 for each singleton
open k, no open forces that αG(n) = 0 for all n; that isMX � ¬∀n ∈ � αG(n) = 0.
Consider an open neighbourhoodO of ∗ and fix n ∈ �. Then for any k ∈ O\{n, ∗},
k extends O and k forces αG (n) = 0. Hence ∗ does not force ‘there exists n such
that αG (n) = 1’, so

MX �� ¬∀n ∈ � αG(n) = 0→ ∃n ∈ � αG(n) = 1.
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Regarding WMP, since we have already seen that αG is not forced to be 1 some-
where, it suffices to show thatαG is forced to be pseudo-positive. So let � be arbitrary.
On the open set {k} this is clear: α(k) = 1, and �(k) is either 0 or 1. We need only
find an appropriate neighborhood of {∗}. Let X0 be {k | k � ∃n �(n) = 1}, and
X1 be {k | k � ∀n �(n) = 0}. If X0 ∈ U then X0 ∪ {∗} � ¬¬∃n �(n) = 1, else
X1 ∪ {∗} � ¬¬(∃n α(n) = 1 ∧ �(n) = 0).
Model 7: This is a strong separation in which DC holds, and can be viewed as an
iteration of the previous construction. Let T be �<� , the nodes of the countably
branching tree. Recall that U is a nonprincipal ultrafilter on the natural numbers.
A basic open set O contains a unique shortest node �O, called the root, and, for all
� ∈ O, {n | �
n ∈ O} ∈ U . It is easy to see that these are closed under intersection,
and so an arbitrary open set is a union of these basic opens. It is also not hard to
see that each basic open set is clopen. It’s fair to call T an iteration of the earlier
space X , because X naturally embeds into any basic open set O, in such a way
that O looks like a refinement of X : {*} gets sent to �O, and � is bijected with the
immediate successors of �O inO, where we identify the open set {n}with the entire
subset of O beneath (that is, the extensions of) the image of n.
Take the full topological model over T .
DC holds by Lemma 2.2, which applies because each basic open is clopen.
For WLEM, we have to show that each node � is in some open set O either
forcing ¬A or forcing ¬¬A. We say that � is determined if some neighborhood of
� decides ¬A (i.e. forces ¬A or ¬¬A); we can assume that such a neighborhood
is a basic open set with � as its root. Notice that if {n | �
n is determined} ∈ U
then � is determined: letting On (with root �
n) decide ¬A for each such n, one of
{�} ∪

⋃
{On | On � ¬A} and {�} ∪

⋃
{On | On � ¬¬A} is open.

We need to show that every node is determined. Suppose � is not. We build a
set of nodes O inductively, all of which are undetermined. We start with � ∈ O.
Notice that if � is undetermined then UND� = {n | �
n is undetermined} is in
U . So for each � ∈ O, include UND� in O. By construction, O is open. If some
open subset (without loss of generality, basic open) of O forces A, then its root is
determined, contradicting its membership inO. That means thatO itself forces ¬A,
which means that � is determined, also a contradiction.
Regarding WMP, we show that no basic open set O with arbitrary root � forces
WMP, which suffices. Let α be a term such that, for k with �
k ∈ O, we have
Ok = O∩{� | � ⊇ �
k} � “α(k) = 1∧∀n �= k α(n) = 0”.ThenO �� ∃n α(n) = 1.
It remains only to show thatO forces the hypothesis of WMP.
Toward that end, let � be an arbitrary term for a binary sequence. Since Ok �
α(n) = 1 ↔ n = k, beneath Ok the WMP hypothesis reduces to ¬¬∃n �(n) =
1 ∨ �(k) = 0. By WLEM, we have ¬∃n �(n) = 1 ∨ ¬¬∃n �(n) = 1, which implies
what we want for anyOk . It remains only to find a neighborhood of � forcing what
we want.
Let X0 be {n | some neighborhood of �
n forces ¬¬∃n �(n) = 1} and X1
be {n | some neighborhood of �
n forces ¬∃n �(n) = 1}. If X0 ∈ U then
some neighborhood of � forces the first disjunct in WMP; if X1 ∈ U then some
neighborhood of � forces the second. �
There is a different way of looking at the previous construction, which we sketch
briefly (as opposed to calling it a fifth construction ;-) ).
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Rather than having the entire tree �<� be present all at once, it can be rolled out
level-by-level within aKripkemodel. Toward this end, letK be the full Kripkemodel
over the partial order �. Let the topological space T consist at node n of �≤n. So,
for instance, at node 0, T contains as a subset �0 = �∅ = {∅}, so T looks like a
single-point space, {*}. A basic open set O at node n contains a unique shortest
sequence �, and if, at n, � ∈ O has length less than n, then {i | n |= �
i ∈ O} ∈ U .
Finally, we need to explainwhatfn(O) looks like, wherefn is the transition function
from node n. For O basic open at Kripke node n, n + 1 |= � ∈ fn(O) if � ∈ O or if
� = �
m has length n+1 and � ∈ O. So if a basic open set at a node contains what
looks like a terminal sequence of T , that seemingly isolated point actually stands
for the entire space extending it.
Notice that we have chosen a restricted notion of open set. For instance, at node
0 the only open set is the entire space. Other subsets of T exist in K, which could
legitimately have been taken to be open. For instance, the set which at 0 contains ∅
and at 1 contains U-many but not all extensions. This restricted notion demands a
corresponding restriction in the sets allowed in the model. At node n, no name for a
set in the topological model may grow at future nodes. That is, suppose t is a name
for a set in the model at node n, so that t consists of pairs of the form 〈s,O〉, where
s is also such a name andO an open set at n. Then at any future node fn(t) consists
entirely of pairs 〈fn(s), fn(O)〉. In particular, no new open sets may appear within
fn(t).
The proof that a full topological model satisfies IZF is valid constructively, and
so holds within K. That our restricted topological model satisfies IZF would have
to be checked in detail. DC holds by re-doing the proof of Proposition 2.2, using
DC in K and the countability of each level of T . WMP fails for the same reason as
in the previous construction. The validation of WLEM uses the fact that the truth
value of a statement at node n is an open set, of the kind described, at node n.
For a sixth construction, start as above, while allowing all possible open sets, and
take the full model.

5.2. Separating the hierarchies. In this section we separate theWLEMn , LLPOn ,
and MP∨n hierarchies in the strongest ways possible by Figure 1, as indicated by
Figure 2.

Theorem 5.2. Over IZF + DC, WLEMn+1 does not imply MP∨n for each n.

Note thatTheorem 5.2 separates all three of the hierarchies at once, for ifWLEMn+1
does not imply MP∨n , then it does not imply the stronger principles WLEMn or
LLPOn , and hence these latter principles cannot be proved fromLLPOn+1 orMP∨n+1
which are weaker than WLEMn+1.

Proof. Model 8: (Aweak separationwithoutDC.) Corresponding toModel 4,
consider the Kripke partial order with root ⊥ and n-many immediate successors 0,
. . . , n − 1. At the successor nodes letMi be an ultrapower of V with nonstandard
integers. Let M⊥ be V . Take the full model over that system. WLEMn+1 holds
because, given n + 1-many mutually incompatible assertions, at each successor
node at most one is true, so there’s at least one false in all of them, and that one is
false at⊥. MP∨n fails, by taking the sequence which is all 0’s at⊥, and at node i has
a 1 in a (necessarily nonstandard) slot in the i th slice of �.
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Model 9: (A strong separation without DC.) As in Model 5, let the Kripke partial
order be the n-branching tree. The base model for a node of length k is Mk . Take
the immediate settling model.
MP∨n fails as above. To see why WLEMn+1 holds, consider a statement A at
node �. Because of A’s parameters, the truth of A at some successor �
i might be
different from at �
j. But by elementarity, the truth at �
i is the same as at all of
its successors.

Model 10: (A weak separation with DC.) This is a topological model correspond-
ing to Model 6. Since the notation gets sufficiently ghastly to obscure the simple
idea behind these models, we give first the case n = 2 before sketching the general
construction.
Let X = � ∪ {∗} as before and let U be a nonprincipal ultrafilter on �. Let
f0, f1 be the functions on � sending n to 2n and 2n + 1, respectively, and set
Ui = {fi”u : u ∈ U} and �i = fi”� (i = 0, 1). We give X the topology generated
by taking

� the emptyset ∅,
� {k} for each k ∈ �, and
� u0 ∪ u1 ∪ {∗} where ui ∈ Ui (i = 0, 1),
and closing under unions. Let MX be the full model over X . As in the previous
section, we can associate to the generic a binary sequence αG forced by X to
have at most one nonzero term and such that ¬∀n ∈ � αG(n) = 0. Recall, in
particular, that k � αG = α̌k for each k ∈ �. Since any open O containing ∗
can be extended to a singleton k0 ∈ �0 and a singleton k1 ∈ �1, ∗ does not force
∀n ∈ � αG(2n) = 0 ∨ ∀n ∈ � αG (2n + 1) = 0. HenceMX ��MP∨.
Suppose, without loss of generality, that X forces ¬

∨2
i,j=0,i �=j Ai ∧ Aj for some

formulas A0, A1, A2 with parameters from V (X ). For i = 0, 1 we define

X i0 = {k ∈ �i : k � ¬A1 ∧ ¬A2};
X i1 = {k ∈ �i : k � ¬A0 ∧ ¬A2};
X i2 = {k ∈ �i : k � ¬A0 ∧ ¬A1}.

Since�i = X i0 ∪X i1 ∪X i2 (i = 0, 1), one ofX 00 , X 01 , X 02 is in U0 and one ofX 10 , X 11 , X 12
is in U1. Taking for illustration the case where X 00 ∈ U0 and X 11 ∈ U1 we have that
O = X 00 ∪X 11 ∪{∗} is an open subset ofX . Since any extension ofO can be further
extended to some k ∈ X 00 ∪X 11 and each such k forces that¬A2,O forces ¬¬¬A2 or
equivalently ¬A2. The other cases are essentially the same. HenceMX �WLEM3.
DC holds by Lemma 2.2.
For arbitrary n, let X , U be as before. For i = 0, . . . , n − 1 define a function fi
on � by fi : m �→ nm + i ; let Ui be the image of U under fi and �i be the image
of � under fi . A base for the topology on X is given by taking

� the emptyset ∅,
� {k} for each k ∈ �, and
� u0 ∪ · · · ∪ un−1 ∪ {∗} where ui ∈ Ui (0 � i � n − 1).
The generic demonstrates that ∗ does not satisfy MP∨n .
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For any formulas A0, . . . , An , with parameters from V (X ), such that X forces
¬
∨n
i,j=0,i �=j Ai ∧ Aj , we form the sets

X ij = {k ∈ �i : k �
∧
l �=j

¬Al} (0 � i � n − 1, 0 � j � n).

Since U is an ultrafilter, for each i there exists ji such that X iji ∈ Ui . Then

O = X 0j0 ∪ · · · ∪Xn−1jn−1 ∪ {∗}

is an open set and by the pigeon-hole principle there exists j ∈ {0, . . . , n} such that
O forces ¬Aj .
DC holds, by Lemma 2.2.
The isolated points are dense in X , so Excluded Middle holds densely, hence this
is a weak separation.

Model 11: We would like a strong separation with DC. The most straightforward
way you’d think to do this is a start, but does not work entirely. That would be
to adapt Model 7. Namely (in the case n=2, say), let the points be �<� ; consider
two copies of U , one of which concentrates on the even naturals and the other on
the odds; and say that a set O is open if, whenever � ∈ O, each of the set of even
and the set of odd children of � in O is in its copy of U . That doesn’t do what we
want, because by considering the grandchildren of � there’s enough room for four
statements to be true.
The additional component needed is like immediate settling, taking the submodel
consisting of those sets that can change from a node to any of the node’s children,
and then have to stop changing. In order for the model not to be trivial at those
children, new sets have to be introduced, which then themselves have one generation
during which they are allowed to change. What this involves is partial existence:
there are some sets at nodes that are not the images of any sets from earlier nodes.
This phenomenon is not new. It is perhaps best known via Kripke models with
nonconstant domains, and has also been studied in more general contexts, first in
[24] and later exposited in [9] and [30] (section 13.6), where the logic of partial
existence was worked out. The model here has aspects of a Kripke model, in that
it is based on a partial order, �<� , and depends on partial existence. But it’s not
a Kripke model, instead making essential use of the topology, because a statement
being true at a node does not mean that it’s true at all children, rather merely on an
open set of children. It could be called the immediate settling topological model.
This situation imposes an additional burden: since no extant meta-theorem applies,
IZF has to be checked by hand. (Possibly this is a full topological model within
the Kripke immediate settling model, but at the very least that would have to be
checked. We prefer just to check IZF directly).
The guiding intuition is still the space fromModel 7. That would be to work over
�<� , and to require of an open setO (in the case of n = 2, for notational simplicity)
that for � ∈ O both {n | �
2n ∈ O} and {n | �
2n + 1 ∈ O} be in U . The fact is,
though, that the model is homogeneous: every node looks like every other node. So
it suffices to work with only the bottom level, {⊥} ∪ �.
The objects at all nodes are defined inductively, as well as the transition functions
fi from ⊥ to i . The sets built by stage α will be the same at all nodes, and so
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the notation Tα suffices. The construction will be a lot like the previous theorem’s
third construction. A big difference is that here the base models are always V . This
obviates of course all concerns about where these objects exist. Another difference
is that there it was easier to formalize the notion of a set not changing anymore,
because there was only one successor node, whereas here we have infinitely many
successors. Hence there is a need for the notion of canonical sets CT α , which we
also define inductively, as those functions g such that

• dom(g) = {⊥} ∪ �,
• g(⊥), g(i) ⊆

⋃
�<α T� ,

• g(⊥) = g(i), and
• if h ∈ g(⊥) then fi(h) ∈ g(⊥).
As for Tα ,
• dom(g) = {⊥} ∪ �,
• g(⊥), g(i) ⊆

⋃
�<α T� ,

• if h ∈ g(i) then fj(h) ∈ g(i), and
• if h ∈ g(⊥) then for all i < n, {k | fkn+i(h) ∈ g(kn + i)} ∈ U .
In addition, we must extend fi to these new sets: fi(g)(⊥) = g(i) = fi(g)(j). It
is easy to check that CT α ⊆ Tα , that fi(g) ∈ CT α and, for g ∈ CT α, fi(g) = g.
Now we need to define truth in this model. Inductively on formulas φ, we define
a set �φ� ⊆ {⊥} ∪ �. By way of notation, fi(φ) refers to the result of applying fi
to each of φ’s parameters, and f⊥(g) = g. Also, if A ⊆ �, thenAi is the i th slice of
A: Ai = {k | kn + i ∈ A}. If A ⊆ � ∪ {⊥} then by Ai we mean (A ∩ �)i .
• �g ∈ h� = {q | ∃f ∈ h(q) ⊥ ∈ �fq(g) = f�}
• �g = h� = {q ∈ � | for all f ∈ g(q) ⊥ ∈ �f ∈ fq(h)�, and vice versa} ∪
{⊥ | ∀f ∈ g(⊥) ⊥ ∈ �f ∈ h� and vice versa, and ∀i < n �g = h�i ∈ U}

• �φ ∧ �� = �φ� ∩ ���
• �φ ∨ �� = �φ� ∪ ���
• �φ → �� = ��� ∪ (�\�φ�) ∪
{⊥ | ⊥ �∈ �φ� ∧ ∀i < n [��� ∪ (�\�φ�)]i ∈ U}

• �∃x φ(x)� = {q | ∃h q ∈ �φ(h)�}
• �∀x φ(x)� = {q ∈ � | for all h ⊥ ∈ �fq(φ)(h)�} ∪
{⊥ | for all h ⊥ ∈ �φ(h)�, and ∀i < n �∀x φ(x)�i ∈ U}
Lemma 5.3. a) i ∈ �φ� iff ⊥ ∈ �fi(φ)�.
b) If ⊥ ∈ �φ� then for i < n �φ�i ∈ U .
Proof. Both parts are proved together via a simultaneous induction.
Regarding a), for i = ⊥ this is trivial.
Otherwise, i ∈ �g ∈ h� iff for some f ∈ h(i) we have ⊥ ∈ �fi(g) = f�. On
the other hand, fi(g = h) is fi(g) = fi(h), so ⊥ ∈ �fi(g = h)� iff for some
f ∈ h(i) we have ⊥ ∈ �f⊥(fi(g)) = f�. But f⊥ is the identity function, so those
are the same.
For =, i ∈ �g = h� iff for all f ∈ g(i) we have ⊥ ∈ �f ∈ fi(h)� and vice
versa. Notice this is exactly the first clause of ⊥ ∈ fi(g = h), so the right-to-left
direction is proven. The second clause of ⊥ ∈ fi(g = h) is �fi(g) = fi(h)�j ∈ U .
If i ∈ �g = h�, then it is straightforward to check that �fi(g) = fi(h)� contains all
of �, and so each slice is in the ultrafilter.
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The cases �φ ∧ �� and �φ ∨�� are trivial to check via induction.
For→, we have i ∈ �φ → �� iff i ∈ ��� or i �∈ �φ�. The first case inductively is
equivalent to ⊥ ∈ �fi(�)�, which is one of the two ways that ⊥ gets into �fi(φ →
�)�. The other way⊥ gets in is if⊥ �∈ �fi(φ)� and for each j < n we have [�fi(�)�∪
(�\�fi(φ)�)]j ∈ U}. The first of those two clauses is equivalent inductively to the
second case. Furthermore, if ⊥ �∈ �fi(φ)�, then, inductively, ⊥ �∈ �f⊥(fi(φ))� =
�fj(fi(φ))�, so j �∈ �fi(φ)�, which is why �fi(φ)� is empty.
For the quantifiers, consider ∃: i ∈ �∃x φ(x)� iff for some h we have i ∈ �φ(h)�
iff, inductively, for some h ⊥ ∈ �fi(φ(h))� = �fi(φ)(fi(h))�. If that’s true, then,
for some h, namely fi(h), we have ⊥ ∈ �fi(φ)(h)�, so ⊥ ∈ �∃x fi(φ)(x)� =
�fi(∃x φ(x))�. In the other direction, suppose ⊥ ∈ �fi(∃x φ(x))�, i.e. for some
h we have ⊥ ∈ �fi(φ)(h)�. Using part b) inductively, there is a j ∈ � with j ∈
�fi(φ)(h)�. Using a) inductively, ⊥ ∈ �fj(fi(φ)(h))� = �fj(fi(φ))(fj(h))� =
�fi(φ)(fj(h))�. But fj(h) = fi(h ◦ �), where � is the permutation that inter-
changes i and j and leaves everything else alone. So for some h, namely h ◦ �, we
have⊥ ∈ �fi(φ)(fi(h))�, whichwehave already seen is equivalent to i ∈ �∃x φ(x)�.
Finally, i ∈ �∀x φ(x)� iff for each h we have ⊥ ∈ �fi(φ)(h)�. Notice that
condition is exactly the first clause of ⊥ ∈ �fi(∀x φ(x))�. The second clause is
∀j < n �∀x fi(φ)(x)�j ∈ U . So suppose that for each hwehave⊥ ∈ �fi(φ)(h)�.We
want to see when k ∈ �∀x fi(φ)(x)�, that is, whether for all h ⊥ ∈ �fk(fi(φ))(h)�.
But �fk(fi(φ))(h)� = �fi(φ)(h)�, so this is exactly our supposition.
Now to show part b). There are some easy cases: if φ is an equality or a universal
statement, this is built right into the definition of �φ�. If φ is a disjunction or
conjunction, this follows easily from U being an ultrafilter. For an implication, if
⊥ ∈ ���, inductively each ���i ∈ U , and those slices are subsets of [���∪(�\�φ�)]i ,
which are then also in U . If⊥ �∈ ��� then there is only one other way⊥ can get into
�φ → ��, and that other way has part b) built in.
For the existential case, suppose for some h we have ⊥ ∈ �φ(h)�. Inductively,
for each i < n, �φ(h)�i ∈ U . Suppose j ∈ �φ(h)�i , i.e. jn + i ∈ �φ(h)�. So for
that h it holds that jn + i ∈ �φ(h)�, which means jn + i ∈ �∃x φ(x)�. In short,
�φ(h)�i ⊆ �∃x φ(x)�i , and so the latter set is also in U .
Finally, consider membership. If ⊥ ∈ �g ∈ h�, then there is an f ∈ h(⊥) with

⊥ ∈ �g = f�. We therefore have each �g = f�i in U . If j is in that set, by part a),
⊥ ∈ �fjn+i(g = f)� = �fjn+i(g) = fjn+i(f)�. Separately from that, by the last
clause of the definition of a set, {k | fk(f) ∈ h(k)}i is in U . Now if j is in that
latter set, then fjn+i(f) ∈ h(jn + i). If j is in both sets, then j ∈ �g ∈ h�i , and of
course ultrafilters are closed under intersection. �
Corollary 5.4. If all of φ’s parameters are canonical, then �φ� is either empty or
� ∪ {⊥}.
Proof. Suppose �φ� is nonempty. If ⊥ ∈ �φ� = �fi(φ)� then by a) i ∈ �φ�. If
i ∈ �φ� ∩ � then again by a) ⊥ ∈ �fi(φ)� = �fj(φ)�, so j ∈ �φ�. �
Lemma 5.5. The equality axioms (reflexivity, symmetry, transitivity) all get full
value.

Now we check that that the axioms of IZF + DC get full value. First note that
the ground model embeds into this model as the hereditarily constant functions. So
Emptyset and Infinity hold, as witnessed by the images of ∅ and �. Pair holds, for,
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given f and g, let h be such that h(⊥) = {f, g} and h(i) = {fi(f), fi(g)}. For
Union, given g, let (

⋃
g)(⊥) be {f | f ∈ h(⊥) for some h ∈ g(⊥)}, and (

⋃
g)(i)

be {f | f ∈ h(⊥) for some h ∈ g(i)}. We leave the verification that these four
constructions satisfy their axioms to the reader.
About the two structural axioms, ∈-Induction is simple, because the sets were
defined inductively on the ordinals.
Regarding Extensionality, we need to show that �f = g ↔ ∀h (h ∈ f ↔ h ∈
g)� = {⊥} ∪ �. That is equivalent to �f = g� = �∀h (h ∈ f ↔ h ∈ g)�. Consider
first i ∈ �. Then i ∈ �f = g� iff for all h ∈ f(i) it holds that ⊥ ∈ �h ∈ fi(g)�
and vice versa. Also, i ∈ �∀h (h ∈ f ↔ h ∈ g)� iff for all h we have ⊥ ∈ �h ∈
fi(f) ↔ h ∈ fi(g)�, which means ⊥ is in both �h ∈ fi(f) → h ∈ fi(g)� and
�h ∈ fi(g) → h ∈ fi(f)�. We will show for all h ∈ f(i) (⊥ ∈ �h ∈ fi(g)�) if
and only if for all h (⊥ ∈ �h ∈ fi(f) → h ∈ fi(g)�), the reasoning for the other
directions being analogous.
Considering the left-to-right direction first. Let h be arbitrary. The RHS holds
when either ⊥ ∈ �h ∈ fi(g)�, or both ⊥ �∈ �h ∈ fi(f)� and for each j < n the jth
slice of �h ∈ fi(g)�∪(�\�h ∈ fi(f)�) is in U . Either⊥ ∈ �h ∈ fi(f)� or not. If so,
then for some ĥ ∈ f(i) it holds that ⊥ ∈ �h = ĥ�. By hypothesis, ⊥ ∈ �ĥ ∈ fi(g).
Thatmeans that for some ĝ ∈ g(i) we’d have⊥ ∈ �ĥ = ĝ�. By transitivity,⊥ ∈ �h =
ĝ, and we’d be done with this direction. The other possibility is ⊥ �∈ �h ∈ fi(f)�.
Let q ∈ � be arbitrary. If q ∈ �h ∈ fi(f)� then for some ĥ ∈ fi(f)(q) it holds
that ⊥ ∈ �fq(h) = ĥ�. Then by the lemma ⊥ ∈ �fq(h) ∈ fq(fi(f)) = fi(f)�,
meaning that for some ĥ ∈ f(i) ⊥ ∈ �fq(h) = ĥ. By hypothesis, ⊥ ∈ �ĥ ∈ fi(g)�.
Arguing as above with transitivity, ⊥ ∈ �fq(h) ∈ fi(g) = fq(fi(g))�. Again via
the lemma, q ∈ �h ∈ fi(g)�. This means that �h ∈ fi(g)� ∪ (�\�h ∈ fi(f)�)�h ∈
fi(g)� ∪ (�\�h ∈ fi(f)�)�h ∈ fi(g)� ∪ (�\�h ∈ fi(f)�)�h ∈ fi(g)� ∪ (�\�h ∈
fi(f)�)�h ∈ fi(g)� ∪ (�\�h ∈ fi(f)�) is all of �, and again we’re done.
Now consider the right-to-left direction. Let h be in f(i). By hypothesis, ⊥ ∈

�h ∈ fi(f)→ h ∈ fi(g)�. Since �h ∈ fi(f)� gets full value, so does �h ∈ fi(g)�.
We still need to handle the case i = ⊥. This is similar, and left to the reader.
The final axioms IZF axioms are Collection, Separation, and Power Set. Actually,
not just Collection, but even Reflection is true. Let α be such that Vα ≺Σn V . Let
gα be the construction of the model up to stage α: gα(q) =

⋃
�<α CT � . Then any

formula of classical complexity Σn reflects to gα . For Separation, for {h ∈ a | φ(h)},
let g(q) be {h ∈ a(q) | ⊥ ∈ �fq(φ)(h)�}. We illustrated Power Set via the most
critical case, P(1). Of course, the empty set is represented in the model by the
constant function which we either suggestively or ambiguously call 0: 0(q) = ∅.
Similarly, 1(q) = {0}. A subset of 1 is given by certain sets A, in that 1A(q) = {0}
if q ∈ A and 1A(q) = ∅ otherwise. For such a function 1A to be a set in the
model, if ⊥ ∈ A then each Ai (i < n) must be in U . Then P(1)(q) = {1A | 1A
is a set in the model}. More generally, h represents a subset of g if h(q) ⊆ g(q)
for all q, and in addition h represents a set in the model by satisfying clauses 3
and 4 in the definition of Tα ; P(g)(q) is the set of those h’s representing a subset
of fq(g).
For DC, it is straightforward to build a choice sequence, using DC in the meta-
theory.
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Finally, WLEMn+1 gets full value, and MP∨n the empty set, as follows. Given
pairwise incompatible φi , i ≤ n, the �φi� are disjoint. So, for a fixed k < n, there
is at most one i ≤ n with �φi�k ∈ U . Hence there is a fixed i with each �φi�k not
in U . For that i, ⊥ ∈ �¬φi �. Of course, for each j �∈ �φi� (for that matter, for each
j ∈ �), there is some i with j ∈ �¬φi �. So �∃i ¬φi� = {⊥} ∪ �. In contrast, let α
be such that �α(k) = 1� = �k (for k < n; for k ≥ n let �α(k) = 1� = ∅). Then α is
a counter-example to MP∨n . �

5.3. The other MP separations.

Theorem 5.6. Over IZF + DC, WMP does not imply MP∨� .

Proof. Model 12: Actually, it is a misnomer to call this a model, since we argue
that any of the constructions from above generalize quite easily, and a misnomer to
call it a proof, since we just sketchmatters quickly. For instance, take the full Kripke
model with root ⊥ and associated model V , and countably many successors with
associated model some�-non-standardM . To show thatMP∨� fails, let α at⊥ look
like all 0’s, and at node n have a 1 in some nonstandard position in the nth block.
To see that WMP holds, we need only consider ⊥, and a sequence α there which
is 0 on the standard part. If at one of the terminal nodes α is the 0 sequence (that
is, ¬¬∃n α(n) = 1 fails at ⊥), then picking � to be α shows that the antecedent of
WMP does not hold at ⊥. Otherwise, let � be α except that on one of the terminal
nodes � is the 0 sequence. Then neither disjunct holds for � at ⊥, and again the
antecedent does not hold.
This can be iterated with immediate settling. For thatmatter, since we’re no longer
trying to preserve any part of WLEM, we can take the full Kripke model over an
appropriately branching tree (defined below), with base Mk for nodes of length
k. Since the model beyond a node of length k has to be definable within Mk , the
branching there has to be indexed by the natural numbers of Mk . MP∨� fails at a
node � of length k, by considering the sequence which is 0 there and at node �
n
has a 1 in someMk-non-standard position in the nth block. WMP holds exactly as
above.
Or, to get DC, we could take a topological model. Let {�i : i ∈ �} be the
partition of � into blocks of size � used in the statement of MP∨� . Let fi be a
bijection between � and �i for each i . Let U be a nonprincipal ultrafilter on � and
Ui the image of U under fi (i ∈ �). We take X = � ∪ {∗} and form opens by
taking unions of: ∅, {k} (k ∈ �), and sets of the form

⋃
{ui : ui ∈ Ui} ∪ {∗}. The

generic binary sequence (that is, the sequence forced by k to be 1 at index k and 0
elsewhere) is then a (weak) counterexample toMP∨� . ForWMP, if no neighborhood
of ∗ forces ¬¬∃n α(n) = 1 then by choosing � to be α the antecedent ofWMP does
not hold for α; else, if {∗} ∪ u is a neighborhood forcing such, let � be α except for
some k ∈ u let k � � = 0. DC holds by Lemma 2.2. Again, this can be iterated in
any of a number of ways as above.

Model 13: As it turns out, there is another variant along the same lines thatworks.
Let X be�∪{∗}. Take the topology onX for which the basic opens are of the form
∅, k, and {∗}∪u where u is cofinite. Take the full topological model. MP∨� fails, and
WMP and DC hold, as above.
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Model 14: Interestingly, this is a natural model one might actually wonder about
for its own sake. Consider the topological model over Q.
By Proposition 2.2, DC holds.
To see that MP∨� fails, let r ∈ Q. Let On be a nested sequence of open intervals
with irrational endpoints and intersection {r}. Let α be such that On � α(n) = 0
and Q\On � α(n) = 1. Any neighborhood of r can force α to be 0 on only finitely
many values. So on no particular block, each of which is infinite, can α be forced
to be 0 everywhere.
In contrast, WMP holds. Let O � ∀�(¬¬∃n (�(n) = 1) ∨ ¬¬∃n (α(n) =

1 ∧ �(n) = 0)) and r ∈ O. We must find a neighborhood of r forcing ∃n α(n) = 1.
For each n, let On be the maximal interval containing r which decides the value
of α(i) for all i < n. If any On forces any α(i) to be 1, we are done. Suppose not.
It cannot be the case that

⋂
n On contains an open interval I with r ∈ I , because,

in that case, letting � be the constant 0 function, no subinterval of I could force
either ¬¬∃n (�(n) = 1) or ¬¬∃n (α(n) = 1), contrary to hypothesis. So

⋂
n On has

r as either its left endpoint or its right endpoint (or both). Assume without loss of
generality it’s the first option. Define � as follows. For one, (r,∞) � �(n) = 0 for all
n. Hence, (r,∞) � ¬∃n �(n) = 1. Also, On � �(n) = 0. Finally, (−∞, inf On) �
�(n) = 1. That means (−∞, r) � ¬∃n (α(n) = 1 ∧ �(n) = 0), because whenever
α is forced to be 1 so is � . So no neighborhood of r can force either disjunct to the
hypothesis of WMP, contrary to assumption. This contradiction finishes the proof.
It’s worth pointing out that the same arguments show the same result for the
model over Cantor space 2� .
It’s also worth observing what happens in themodel overR. The binary sequences
in that model are (the images of) binary sequences from the ground model, so MP
for binary sequences holds. But by similar arguments to those here, MP for reals
fails, while WMP for reals holds. (See the final section, Concluding Remarks, for
further discussion on related topics.) �
Theorem 5.7. There is a model of IZF + DC in which WLEM� holds but each
MP∨n fails.
Proof. We sketch the adaptations of the main constructions from earlier. For a
weak separation without DC, start with a Kripke partial order with ⊥ on bottom
and successors 0, 1, 2, . . . . To node ⊥ associate V and to node n associate an
�-non-standard ultrapower M of V , the same for all n. At ⊥, take all sets that
eventually become constant. That is, with kn the transition function from ⊥ to n,
take all sets x such that, for some i and all n > i , fn(x) = fi(x). It’s easy to check
that this satisfies IZF. WLEM� holds, as follows. Given an�-sequence of mutually
incompatible statements Aj at⊥, let x be the parameter used to define that family.
Let i be the point beyond which x becomes constant. At each node 0, 1, . . . , i ,
at most one Aj is true, and beyond i the only true Aj is the one true at i , if any.
So there is at least one (in fact, infinitely many) Aj false at all terminal nodes, and
hence also false at ⊥. Each MP∨n fails, because there’s no bound on the i by which
an x stops changing.
To get a strong separation (still without DC), iterate the previous construction.
The Kripke partial order is �<� , a set has to settle down the level after it appears
(immediate settling), and considering the transition functions kn when applied to a
set, they’re eventually constant.
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We do not know whether DC holds in those examples. To be sure of getting a
model of DC (weak separation), we have to adapt the earlier topological example.
That goes as follows. Partition � into infinitely many infinite sets. The topology
on � ∪ {⊥} is that each {k} is open, and A ∪ {⊥} is a neighborhood of {⊥} iff
each Ai is in U , where Ai = {n | the nth element of the i th slice of � is in A}. Each
j ∈ � induces a function fj from the sets in the full topological model onto V , by
interpreting an open set O as true if j ∈ O and false otherwise. Take the submodel
of the full model consisting of those sets x that eventually settle down on slices:
there is a j such that fk(x) is independent of the choice of k, as long as k is in �’s
i th slice and i ≥ j. At this point it is routine to check that IZF + DC + WLEM�
hold and ∃n MP∨

n does not.
To get a strong separation with DC, we have to iterate the topological example.
This is as in Model 11. �
Regarding the nonimplication fromMP to LLPO� , it was observed in [23] that a
quite standard model (realizability using the Turing computable functions) does it.
Still, we think it fitting to provide a model doing the same thing in the style of the
other models of this paper.
Theorem 5.8 ([23]). Over IZF + DC, MP does not imply LLPO� .
Proof. For a weak separation, let {�i : i ∈ �} be a partition of � into blocks of
size� and letfi be a bijection between� and�i for each i . Let U be a nonprincipal
ultrafilter on � and Ui the image of U under fi (i ∈ �). We take X = � ∪ {∗,∞}
and form opens by taking unions of: ∅, {k} (k ∈ �), {∞}, and sets of the form⋃
{ui : ui ∈ Ui} ∪ {∗,∞}.
Take the full model over X . As a full model, it satisfies IZF. By Proposition 2.2,
DC holds. Let α be such that {k} � α(n) = 1 iff n = k, and {∞} � α(n) = 0 for
all n. It is easy to see that α is a counter-example to LLPO� . As for MP, suppose
∗ ∈ O and O � ¬¬∃n �(n) = 1. Then {∞} ⊆ O, and {∞} � ∃n �(n) = 1. Let k
be such that {∞} � �(k) = 1. Let O′ ⊆ O be a neighborhood of ∗ forcing a value
of �(k). Since∞ ∈ O′, O′ must force �(k) to be 1, which suffices.
To get a strong separation, this can be iterated in any of a number of ways as
above. �

§6. WLPO andWKL. It has been pointed out to us by Kohlenbach thatWLPO
and WKL are separated by functional Lifschitz realizability [1, 28] and by the
monotone functional interpretation [12,14]. They can also be separated in the style
of this paper by using a Kripke model.
Theorem 6.1. Over IZF + DC, WKL does not imply WLPO.
We remark that in all of the models of this theoremMP holds, as is easily verified.
Proof. Model 15: (A weak separation with DC.) The Kripke poset P consists
of a root node ⊥ with two successors 0 and 1. LetM⊥ andM0 be V , andM1 be an
ultrapower of V with nonstandard integers. Take the full model over that system.
Since the universes at 0, 1 are both classical, DC can be lifted directly to the
meta-level: if⊥ � x0 ∈ X ∧∀x ∈ X ∃y ∈ X ϕ(x, y), then x0 ∈ S and ∀x ∈ S ∃y ∈
S (⊥ � ϕ(x, y)) where S = {x : ⊥ � x ∈ X}. Applying DC at the meta-level we
construct a function that can be used to construct a name witnessing the internal
instance of DC.
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To see that WKL holds, suppose that g ∈ K⊥ is forced to be a decidable, infinite
binary tree at ⊥. Since g is decidable at ⊥, g(⊥), g(0), and g(1) all have the same
standard part. Since K1 = M1 is classical, there exists in M1 an infinite branch α
of g(1). Let α0 be the standard part of α. Then ({ň | n ∈ α0}, α0, α) is an infinite
branch of g at ⊥.
WLPO fails in our Kripke model because there are names that look like the zero
sequence at⊥ and 0, but have a one at a nonstandard input at 1. Explicitly, let α be
a binary sequence in K1 with the only nonzero terms at nonstandard places. Then
g = ({0̌n | n ∈ �}, 0, α) is a binary sequence at ⊥ such that 0 � ∀n g(n) = 0 and
1 � ∃n g(n) = 1; hence ⊥ does not force WLPO for g.

Model 16: We now iterate the previous construction, to get a strong separation,
albeit without DC. The result looks like Model 5 or 9.
We want each node of our Kripke model to look like ⊥ from the construction
right above, so our poset will be the full binary tree 2<� . For a node � containing n
occurrences of 1, the associated model will beMn, the nth iterated ultrapower of V .
Take the immediate settling model over that system. WKL holds, and WLPO fails,
as in the immediately preceding construction.

Model 17: We now present a topological model, a small variant of Model 6, to
get DC to hold (in a weak separation).
Let U be a nonprincipal ultrafilter on the natural numbers. Let X be � ∪ {∗,∞},
and topologize X by letting the basic open sets be ∅, {k}(k ∈ �), {∞}, and sets
of the form {∗,∞} ∪ u for u ∈ U . (So open sets are arbitrary unions of those.)
Consider the full topological modelMX .
To see that WLPO fails in MX , let α be such that �α(k) = 1� = {k}. Since

∞ � ∀n α(n) = 0 and k � ∃n α(n) = 1 for each k, any neighbourhood of ∗ can
be extended to both a neighbourhood forcing ∀n α(n) = 0 and a neighbourhood
forcing ∃n α(n) = 1. Thus ∗ does not force ∀n α(n) = 0 ∨ ¬∀n α(n) = 0.
With regard to LLPO, since each point in {∞} ∪ � behaves classically, we need
only show that ∗ � LLPO. Let α be a name that, without loss of generality,X forces
to be a binary sequence with at most one nonzero term. Let

SE = {k | k � ∀n α(2n) = 0}

and
SO = {k | k � ∀n α(2n + 1) = 0}.

Since SE ∪ SO = �, either SE or SO is in U ; without loss of generality, suppose
it’s SE . If for some k we had ∞ � α(2k) = 1, then no neighbourhood of ∗
could force a value for α(2k). Hence ∞ � ∀n α(2n) = 0. Because SE ∪ {∞}
is dense in SE ∪ {∞, ∗}, for each k the latter set forces ¬¬α(2k) = 0. Because
some neighbourhood of ∗ forces a value for each α(n), in particular for n = 2k,
SE ∪ {∞, ∗} � α(2k) = 0. Hence SE ∪ {∞, ∗} � ∀n α(2n) = 0.
Because X is dim-zero-dimensional, by Proposition 2, DC holds.
Because both LLPO and DC hold, WKL holds.

Model 18: In order to get a strong separation (with DC), we need to iterate the
previous construction. The most straightforward iteration, as in Model 7, does not
work, because of the same problem as in Theorem 5.2. In some detail, consider a
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simplified, one-step iteration, by which the spaceX can be thought of as containing
the nodes of a tree of height two. On level 0 is just ∗; level one contains the successors
of ∗, namely ∞ and k for each k ∈ �; the level-two successors of each � on level
one have the form∞� and k� . For a set O to be open, if it contains � from level
one, it must contain ∞� , and also {k | k� ∈ O} ∈ U . Similarly if ∗ ∈ O. For
better or worse, this model does not satisfy LLPO, as follows. Let α be the binary
sequence such that �α(2n) = 1� = {n∞}, and �α(2n + 1) = 1� = {n,∞n} ∪ {kn |
k ∈ �}. In words, the set that forces the odd entries of α to be 0 is the tree
beneath∞, and the set that forces the even entries to be 0 is the tree beneath all the
k’s; since any neighborhood of ∗ has to contain both, no neighborhood of ∗ can
force either.
Still, an iteration for a strong separation is possible, with immediate settling.
This is like Model 11. The space consists of finite sequences from {∞} ∪ �. (∗ is
represented by the empty sequence.) For the topology, if O is a basic open set and
� ∈ O, then �
∞ ∈ O, and {k | �
k ∈ O} ∈ U . The sets at a node have to stop
changing after evaluation at any child of the node, as in Theorem 5.2. We leave the
verification that this is as desired to the reader. �

§7. Concluding remarks. In work not included here, we have shown that to
get Theorem 5.1 the use of an ultrafilter-based space is actually necessary, and,
similarly, to get Theorem 5.6, the use of nonultra, filter-based spaces is neces-
sary. We would like to see other such necessity proofs, for the topologies here as
well as elsewhere. We would also like to see some converses to these theorems:
what general properties of topological spaces could imply that the corresponding
models satisfy and falsify certain principles? For instance, Richman [22] shows
that the topological model over any metric space satisfies the real-number ver-
sion of WMP, and Hannes Diener has observed that Richman’s proof extends
to any first countable, completely regular space. Is Richman’s theorem optimal?
Is it acutally an equivalence? What would guarantee that binary WMP holds?
There’s a certain incompatibility between a topological space beingmetric andbeing
ultrafilter-based; is there a nice theoremhere thatwhether themodel over a space sat-
isfies WMP or not corresponds to a nice ultrafilter-vs.-metric style division among
spaces?
Since we’re talking about the real-number version of WMP, what would a space
have to look like to separate binary WMP from real WMP?
It bears observation that the constructions of the last two theorems are incom-
patible: one produces ultrafilters, the other filters that are not ultra. This is really
no surprise, for the principles in the former case—LLPO and not LPO—and in the
latter—WMP and not MP—taken together are contradictory, as is easily seen in
Figure 1. Could the kind of topology-based proofs used here be extended to show
any of the equivalences in Figure 1?
With one exception, we provided models for all of the separations in Figure 1.
Even when redundant, we thought it of interest to provide models in the style
of this paper. The one exception is the nonimplication from LLPO to WKL. Is
there a model of the kind exposited here providing that separation? Or are there
provably none?
In the first few models for Theorems 5.1, 5.2, 5.6, 5.7, and 5.8, does DC hold?
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We mentioned some work of Kohlenbach and collaborators, who achieve results
similar to some of ours. They use realizability over higher-type arithmetic HA� .
Can those constructions be adapted to provide independence proofs over IZF?
There are plenty of other foundational principles than those we have been dis-
cussing here: BD-N, continuity axioms, Church’s Thesis, Kripke’s Schema, the Fan
Theorem and its weakenings, to name a few. It would be nice to see them included
in an expanded version of the scheme we present here, to get an overview of all their
interrelationships.
One in particular that we will mention, because it fits squarely into our scheme,
is a weakening of WKL: weak weak König’s lemma (WWKL) states that if every
level of a binary tree T has at least half the nodes of that same level of the full
tree, then T has an infinite path. It is easy to see that WKL implies WWKL and
WWKL implies LLPO. We conjecture that neither implication reverses. Of course
the Lifschitz realizability of [5] separating WKL and LLPO provides one of these
separations, we just do not know which. What has been proved [33] is that WWKL
is strictly weaker than WKL over RCA0, a weak (classical) subsystem of second
order arithmetic. That proof was then adapted to a constructive setting in [16],
but applied to the classical contrapositives of WKL and WWKL, there called
D-FANandW-D-FAN, respectively. It is then shown that theYu-Simpson argument
that WWKL does not imply WKL translates to a proof that over IZF W-D-FAN
does not imply D-FAN. In fact, it is not hard to see that both WKL and WWKL
fail in this model. So apparently the classical proof separating WKL and WWKL
does not translate to such a separation constructively. (Admittedly there could be
other adaptations of the Yu-Simpson proof, so perhaps we should say does not so
translate yet.) If one is looking to classical constructions for inspiration, one might
think to look at LLPO. To be sure, LLPO itself is a classical triviality, but still
one could imagine variants, such as with computability or uniformity hypotheses.
We are however unaware of any classical study of any correlate of LLPO, and so
have no guidance there.
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