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Abstract. We show that several weakenings of the Cauchy condition are all equiva-

lent under the assumption of countable choice, and investigate to what extent choice is

necessary. We also show that the syntactically reminiscent notion of metastability allows

similar variations, but in terms of its computational content is an empty notion.

§1. Almost Cauchyness. Apart from the last section, we work in Bishop
style constructive mathematics [4]—that is mathematics using intuitionistic
instead of classical logic and some appropriate set-theoretic or type theoretic
foundation [1]. Unlike Bishop, however, we do not freely use the axiom of
countable/dependent choice, but explicitly state every such use.

In [3] a weakened form of the usual Cauchy condition is considered. There
a sequence (xn)n>1 in a metric space (X, d) is called almost Cauchy, if for any
strictly increasing f, g : N→ N

d(xf(n), xg(n))→ 0

as n → ∞. (This property will be named C2 below). Unsurprisingly, and as
indicated by its name, every Cauchy sequence is almost Cauchy. In the same
paper mentioned above it is also shown that Ishihara’s principle BD-N suffices to
show the converse: that every almost Cauchy sequence is Cauchy. Thus the two
conditions are equivalent not only in classical mathematics (CLASS), but also in
Brouwer’s intuitionism (INT) and Russian recursive mathematics á la Markov
(RUSS) as in all these models BD-N holds. In fact, it was only recently that it
has been shown that there are models1 in which this principle fails [7, 10]. In this
paper we will link the notion of almost Cauchyness to various other weakenings
proposed by Fred Richman and investigate similarities and differences to the
notion of metastability which was proposed by Terence Tao.

Without further ado we will start the mathematical part of the paper with
the following convention: For two natural numbers n,m the interval [n,m] will
denote all natural numbers between n and m; notice that this notation does not
necessitate n 6 m.

Proposition 1. Consider the following conditions for a sequence (xn)n>1 in
a metric space (X, d), where each condition should be read as prefaced by

1As BISH is not formalised in the same spirit as normal, everyday, mathematics is formalised,

we use the phrase “model of” here somewhat loosely. Of course there are strict formalisations
of BISH and the structures falsifying BD-N are models of such formalisations.
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“for every ε > 0 and for all strictly increasing f, g : N → N there exists N ∈ N
such that for all n > N”

C1: d(xn, xg(n)) < ε
C1′: ∀i, j ∈ [n, g(n)] : d(xi, xj) < ε
C2: d(xf(n), xg(n)) < ε
C2′: ∀i, j ∈ [f(n), g(n)] : d(xi, xj) < ε
C3: d(xg(n), xg(n+1)) < ε
C3′: ∀i, j ∈ [g(n), g(n+ 1)] : d(xi, xj) < ε

The following implications hold.

C1

C1′

C2

C2′

C3

C3′

Furthermore all conditions are equivalent using countable choice.

Proof. C1 implying C2 is a simple consequence of the triangle inequality—
nevertheless, this small point is of importance in the later discussion. It is also
trivial to see that Ci′ implies Ci for i = 1, 2, 3. With f = id one can also see that
C1 is a special case of C2 and the same holds for C1′ and C2′. Similarly one can see
that C2 implies C3 and C2′ implies C3′. Since [f(n), g(n)] ⊂ [n,max{g(n), f(n)}]
for strictly increasing f and g C1′ implies C2′

To see that C3′ implies C1′ consider the intervals

Gn = [gn(0), gn+2(0)] .

We claim that for every n there is a k such that

[n, g(n)] ⊂ Gk .(1)

To see this let n ∈ N be arbitrary. Since g is strictly increasing we can easily
show by induction that gn(0) > n. Therefore there exists k 6 n such that

gk(0) 6 n 6 gk+1(0) .

Applying g to the second of these two inequalities we also get g(n) 6 gk+2(0),
and thus [n, g(n)] ⊂ Gk.

Now consider the functions f and h defined by f(n) = g2n(0) and h(n) =
g2n+1(0). By C3′ eventually

∀i, j ∈ [f(n), f(n+ 1)] : d(xi, xj) < ε

and

∀i, j ∈ [h(n), h(n+ 1)] : d(xi, xj) < ε .

Since for even n, say n = 2k, we have Gn = [f(k), f(k + 1)] and for odd n, say
n = 2`+ 1 we have that Gn = [h(`), h(`+ 1)], we can conclude that eventually

∀i, j ∈ Gn : d(xi, xj) < ε
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and thus have shown C1′.
For the rest of the proof we will assume countable choice and prove that

C3 implies C3′, which in turn by transitivity will show that all conditions are
equivalent. To this end let g be an arbitrary increasing function and ε > 0. For
each n choose natural numbers in and jn and a binary flagging sequence λn such
that g(n) 6 in < jn 6 g(n+ 1) and

λn = 0 =⇒∀i, j ∈ [g(n), g(n+ 1)] : d(xi, xj) < ε ,

λn = 1 =⇒ d(xin , xjn) >
ε

2
.

Notice that it might happen that in+1 = jn, but at least always jn < in+2.
Therefore, to get strictly increasing functions, we need to work with two functions
f and g defined by f(2n) = i2n, f(2n+ 1) = j2n, g(2n) = i2n+1, and g(2n+ 1) =
j2n+1. By C3 there is N and M such that for all n > N d(xf(n), xf(n+1)) <

ε
2

and for all n > M d(xg(n), xg(n+1)) < ε
2 . We claim that there cannot be

n > max{N,M} such that λn = 1. For if there were such an even n we would
have the contradiction

ε

2
< d(xin , xjn) = d(xf(n), xf(n+1)) .

We can treat the odd case in a similar fashion, and therefore λn = 0 for all
n > max{N,M}, which is saying that C3′ holds. a

We say that a sequence is almost Cauchy if it satisfies C2′ (and therefore
any of the above properties).2 Naturally, we are going to consider the following
statement

(aCC) Every almost Cauchy sequence in a metric space is Cauchy.

As mentioned above, it is shown in [3] that BD-N implies that every almost
Cauchy sequence is Cauchy, and therefore

BD-N =⇒ aCC .

In the same paper it is also shown that if one drops the triangle inequality
and works with so called semi-metric spaces, then this is in fact an equivalence.
However, the Berger, Bridges, and Palmgren proof crucially needs semi-metric
spaces instead of metric spaces, since in [8] it is shown that the statement that
every almost Cauchy sequence is Cauchy implies BD-N is not provable within
BISH. This is done by giving a topological model T . Notice that T also proves
countable choice, so this result does not change, even if we switch to any of the
other conditions of Proposition 1.

Next we can show that, conveniently, it is enough to consider the monotone,
real case.

Proposition 2. (countable choice) If every decreasing/increasing sequence of
reals that satisfies the almost Cauchy condition is Cauchy, then aCC holds.

2Notice that in [3] “almost Cauchy” is defined as satisfying C2. Since in that work the

authors assume countable choice this is not a conflicting definition. In the absence of choice it
seems, to us, most natural to use the strongest notion.
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Proof. Let xn be a sequence satisfying C2′. First note that for every m the
sequence defined by

r(m)
n = max

i,j∈[m,m+n]
{d(xi, xj)}

is increasing. We want to show that it also satisfies the almost Cauchy condition.
To this end let f and g be strictly increasing and ε > 0. We know, by C2′, that
there is N such that for all n > N and i, j ∈ [m+ f(n),m+ g(n)]

d(xi, xj) < ε/2 .(2)

Now consider k, ` ∈ [f(n), g(n)]. W.l.o.g. ` < k. Then∣∣∣r(m)
k − r(m)

`

∣∣∣ = max
i,j∈[m,m+k]

{d(xi, xj)} − max
i,j∈[m,m+`]

{d(xi, xj)} .

We will show that this distance is less than ε. First, by the definition of the
maximum3 we can choose p, q ∈ [m,m+ k] such that

d(xp, xq) > max
i,j∈[m,m+k]

{d(xi, xj)} − ε/2 .

We may assume that p 6 q. We have to distinguish three cases depending whether
p and q are both to the left of m+ ` or on both sides or to the right of it:

• If q 6 m+ `, then

max
i,j∈[m,m+`]

{d(xi, xj)} > d(xp, xq)

and therefore

max
i,j∈[m,m+k]

{d(xi, xj)} − max
i,j∈[m,m+`]

{d(xi, xj)}

< d(xp, xq) + ε/2− max
i,j∈[m,m+`]

{d(xi, xj)}

6 d(xp, xq) + ε/2− d(xp, xq) < ε

• If p 6 m+ ` < q, then

max
i,j∈[m,m+`]

{d(xi, xj)} > d(xp, xm+`) .

Furthermore if m+ ` 6 q, then q ∈ [m+ `,m+ k] ⊂ [m+ f(n),m+ g(n)]
and therefore d(xm+`, xq) < ε/2 by Equation 2. Together

max
i,j∈[m,m+k]

{d(xi, xj)} − max
i,j∈[m,m+`]

{d(xi, xj)}

< d(xp, xq) + ε/2− max
i,j∈[m,m+`]

{d(xi, xj)}

6 d(xp, xm+`) + d(xm+`, xq) + ε/2− max
i,j∈[m,m+`]

{d(xi, xj)}

6 d(xp, xm+`) + d(xm+`, xq) + ε/2− d(xp, xm+`)

< ε/2 + ε/2 = ε

3Notice that in general, even given just two numbers x, y we cannot decide whether x =
max{x, y} or y = max{x, y}, since that would imply the non-constructive lesser limited principle

of omniscience. We can, however, given real numbers x1, . . . , xn and ε > 0 find i such that
xi > max{x1, . . . , xn} − ε.
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• If m+ ` 6 p, then p, q ∈ [m+ `,m+ k] ⊂ [m+ f(n),m+ g(n)] and therefore
d(xp, xq) < ε/2 by Equation 2. Thus we have

max
i,j∈[m,m+k]

{d(xi, xj)} < d(xp, xq) + ε/2 < ε/2 + ε/2 = ε .

And in particular

max
i,j∈[m,m+k]

{d(xi, xj)} − max
i,j∈[m,m+`]

{d(xi, xj)} 6 max
i,j∈[m,m+k]

{d(xi, xj)} < ε

That is in all cases for n > N and k, ` ∈ [f(n), g(n)]∣∣∣r(m)
k − r(m)

`

∣∣∣ < ε ,

which means that the sequence
(
r
(m)
n

)
n>1

satisfies the almost Cauchy condition.

Thus, by our assumption, it is Cauchy and converges to a limit, say ym.

Since by definition r
(m)
n+1 > r

(m+1)
n we also have that in the limit ym > ym+1

([4, Proposition 2.3.4.f]), so (ym)m>1 is decreasing. We want to show that it also
satisfies the almost Cauchy condition C2′. So let f and g be strictly increasing

and ε > 0. Since (r
(i)
k )k>1 converges to yi for every n we can use countable choice

to fix a function h : N→ N such that

∀i ∈ [f(n), g(n)] : |yi − r(i)k | < ε/4

for all k > h(n). Since xn satisfies C2′ there exists N such that for all n > N we
have

∀i′, j′ ∈ [min{f(n), g(n)},max{f(n), g(n)}+ h(n)] : d(xi′ , xj′) < ε/4 .

Then, in particular, for all i, j ∈ [f(n), g(n)] we have that∣∣∣∣ max
`,`′∈[i,i+h(n)]

d(x`, x`′)− max
p,p′∈[j,j+h(n)]

d(xp, xp′)

∣∣∣∣
6

∣∣∣∣ max
`,`′∈[i,i+h(n)]

d(x`, x`′)

∣∣∣∣+

∣∣∣∣ max
p,p′∈[j,j+h(n)]

d(xp, xp′)

∣∣∣∣
6 ε/4 + ε/4 = ε/2 ,

since

[i, i+ h(n)] ⊂ [min{f(n), g(n)},max{f(n), g(n)}+ h(n)]

and

[j, j + h(n)] ⊂ [min{f(n), g(n)},max{f(n), g(n)}+ h(n)] .

Combining all of this we get that for all n > N and i, j ∈ [f(n), g(n)]

|yi − yj | 6 |yi − r(i)h(n)|+ |yj − r
(j)
h(n)|+ |r

(i)
h(n) − r

(j)
h(n)|

6 ε/4 + ε/4 + ε/2 .

So (ym)m>1 is a Cauchy sequence converging to a limit z > 0. We want to show
that z = 0. So assume4 z > 0. That means that ym > z > 0 for all m ∈ N, since

4We remind the reader that even constructively equality is stable.
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ym is decreasing. Therefore, using countable choice, we can fix g : N→ N such
that

r
(m)
g(m) >

z/2 .

But if we apply property C2′ of (xn)n>1 to f = id, id +g, and ε = z/2 we get
that for i, j ∈ [m,m+ g(m)]

d(xi, xj) < z/2

eventually, and therefore

r
(m)
g(m) = max

i,j∈[m,m+g(m)]
{d(xi, xj)} < z/2

eventually. This is a contradiction and thus z = 0
So z = 0 and since d(xi, xj) 6 ym for all i, j > m, we have shown that (xn)n>1

is Cauchy. a

§2. Metastability. In a program suggested by Terence Tao [13], it is proposed
to recover the “finite” (constructive) content of theorems by replacing them with
logically (using classical logic) equivalent ones that can be proven by finite
methods. Since often there is no way to establish the Cauchy condition it is
suggested to be replaced with the following notion of metastability. A sequence
(xn)n>1 in a metric space (X, d) is called metastable iff

∀ε > 0, f : ∃m : ∀i, j ∈ [m, f(m)] : d(xi, xj) < ε .

Notice that this is almost the same definition as C1′, and, in fact, one can
easily show that an almost Cauchy sequence is metastable. However—as we will
see—metastability contains almost no constructive content.

As noted in [2] every non-decreasing sequence of reals bounded by B ∈ R is
metastable since it is impossible that d(xm, xf(m)) >

ε
2 for all 1 6 m 6 2B

ε . How
about the converse: is every non-decreasing metastable sequence bounded? There
is no hope in finding a constructive proof since we will see that it is equivalent to
the non-constructive limited principle of omniscience

(LPO) For every binary sequence (an)n>1 we can decide whether

∀n ∈ N : an = 0 ∨ ∃n ∈ N : an = 1.

Under the assumption of countable choice LPO is equivalent to deciding for all
real numbers whether x < 0∨ x = 0∨ 0 < x. Countable choice is needed to given
a real number x construct a sequence of rationals converging to x. LPO is also
equivalent to even stronger statements:

Proposition 3. (countable choice) LPO is equivalent to either of the following

1. The Bolzano Weierstraß theorem: every sequence of reals in [0, 1] has a
convergent subsequence.

2. For every binary sequence (an)n>1

∃N : ∀n > N : an = 0 ∨ ∃kn ∈ NN : akn = 1.
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Proof. The equivalence of LPO with the Bolzano Weierstraß theorem can be
found in [11].

2 obviously implies LPO. Conversely we can show 2 by applying LPO countably
many times: using LPO (and unique choice) construct a binary sequence bn such
that

bk = 0 =⇒∃n > k : an = 1

bk = 1 =⇒∀n > k : an = 0

Now, using LPO again, either ∃N : bN = 1 or ∀k : bk = 0. In the first case
∀n > N : an = 0. In the second case we can use unique choice5 to find kn ∈ NN

such that ∀n ∈ N : akn = 1. a

Proposition 4. (countable choice) LPO is equivalent to the statement that
every metastable, non-decreasing sequence of rationals is bounded.

Proof. Assume (xn)n>1 is non-decreasing and metastable. For every k we

can fix, using LPO countably many times, a binary sequence (λ(k))n>1 such that

λ(k)n = 0 =⇒xn 6 k

λ(k)n = 1 =⇒xn > k .

Then for every k, using LPO on (λ
(k)
n )n>1, we can decide whether k is an upper

bound of (xn)n>1 or not. So we can fix another binary sequence ηk such that

ηk = 1 =⇒ k is an upper bound

ηk = 0 =⇒∃` : x` > k .

Using LPO yet again, we can thus either find an upper bound or, using dependent
choice, we can fix a function f : N → N such that xf(n+1) > xf(n) + 1 for all
n ∈ N. Since xn is non-decreasing f is increasing. Furthermore

d(xf(n+1), xf(n)) > 1 ;

a contradiction to the metastability. Hence (xn)n>1 is bounded.
Conversely, let (an)n>1 be a binary sequence that has, w.l.o.g., at most one 1.

Now consider

xn =

n∑
i=1

iai .(3)

It is easy to see that xn is metastable: if f : N → N is increasing, then either
ai = 0 for all i ∈ [1, f(1)] or ai = 0 for all i ∈ [f(2), f(f(2))]. In both cases xi is
constant on an interval of the form [m, f(m)].

Now if xn is bounded, there is N ∈ N with xn < N . If there was i > N with
ai = 1, then xi = i > N which is a contradiction. Hence ai = 0 for all i > N ,
that is we only need to check finitely many entries to see if (an)n>1 consists of 0s
or whether there is a term equalling 1. a

5To use unique choice we need to always pick the smallest kn+1 > kn such that akn+1
= 1.
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Since the construction of the sequence in the proof above (see Equation 3)
relies on the terms being potentially very large one might still hope that there is
maybe a chance that every bounded, metastable sequence converges. However,
also this statement is equivalent to LPO.

Proposition 5. (countable choice) LPO is equivalent to the statement that
every bounded, metastable sequence of rationals converges.

Proof. Assume that LPO holds and that (xn)n>1 is a bounded and metastable
sequence of rationals. Since LPO implies the Bolzano Weierstraß theorem (see
Proposition 4) there exists x ∈ R and kn ∈ NN such that xkn converges to x.
Now let ε > 0 be arbitrary. For every n ∈ N we can use LPO to decide whether

|x− xn| < ε ∨ |x− xn| > ε .

So, using (unique) countable choice we can fix a binary sequence (λn)n>1 such
that

λn = 0 =⇒|x− xn| < ε

λn = 1 =⇒|x− xn| > ε .

By Proposition 4 either there exists N such that λn = 0 for all n > N or there
exists a strictly increasing `n ∈ NN such that λ`n = 1 for all n ∈ N. We will show
that the second alternative is ruled out by the metastability: fix M such that
|xkn − x| < ε

2 for n >M and hence

|xkn − x`n | >
ε

2
for n >M .(4)

Now define f : N → N by f(n) = max{kn+M , `n+M}. Then f is increasing.
Since (xn)n>1 is metastable there exists m such that for all i, j ∈ [m, f(m)] we
have |xi − xj | < ε

2 . Since km+M , `m+M ∈ [m + M,f(m)] we get the desired
contradiction to 4.

Conversely let (an)n>1 be a binary sequence with at most one term equalling 1.
We will show that (an)n>1 is metastable. So let f : N→ N an increasing function.
Now either there exists i ∈ [1, f(1)] such that ai = 1 or for all i ∈ [1, f(1)]
we have ai = 0. In the first case, since (an)n>1 has at most one 1, for all
i ∈ [f(1) + 1, f(f(1) + 1)] we have ai = 0. In both cases there exists m such that,
regardless of ε > 0, we have

∀i, j ∈ [m, f(m)] : |ai − aj | = 0 < ε ;

that is (an)n>1 is metastable. Now if this sequence converges it must converge to
0. So there exists N ∈ N such that for all n > N we have aN = 0. So we only
need to check finitely many indices n ∈ N for an = 1, and hence LPO holds. a

It is only natural to ask how variants of metastability along the lines considered
in the first section interact. To this end let us consider the properties MS(′)1− 3
of a sequence, which are the same as C(′)1− 3 in Proposition 1, only that they
are read as being prefaced by “for every ε > 0 and for all strictly increasing
f, g : N → N there exists n ∈ N.” With this notation metastability, as defined
above, is MS1′. Not surprisingly we can reuse large parts of the proof of
Proposition 1 in the next one.
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Proposition 6. The following implications hold between conditions MS(′)1−3
for a sequence in a metric space.

MS1

MS1′

MS2

MS2′

MS3

MS3′

The proof is identical to the one of Proposition 1, apart from the proof that
MS1 implies MS2 which does not translate and which leaves us therefore with
fewer implications.

§3. Choice is Necessary. In recent years, there has been an increasing
sensitivity to the use of countable choice in constructive mathematics. In Bishop’s
words, “meaningful distinctions deserve to be preserved” and some researchers
have argued [12] that the distinctions which are removed by the use of countable
choice are, indeed, meaningful.

So the elephant-in-the-room question raised by Section 1 is, whether the use
of countable choice in Proposition 1 was really necessary. We will show in the
next proposition that this is the case—at least to prove the equivalence between
the weakest (C3) and the strongest (C3′) notion. This means that in the absence
of choice the middle (C1) must be inequivalent to at least one of the other two
levels, but it is not clear to which, and whether it is to both of them.

Theorem 7. C3 does not imply C3′.

Proof. The counter-example will involve a sequence xn of reals. We will also
make use of particular natural numbers a < b, with several counter-examples i, j
coming from the interval [a, b]. These a and b will be non-standard, and also
a non-standard distance apart. The sequence xn will be 0 outside the interval
[a, b]; within that interval, the sequence will increase by 2/(b− a) each step for
the first half of that interval, up to a value of 1, and then decrease that same
amount for each step in the second half, back down to 0. How does this help
satisfy C3? For g’s which take on no values in [a, b], there is nothing to do, as
then d(xg(n), xg(n+1)) is always 0. For other g’s, in the end we will see that we
need concern ourselves only with standard ε. For values within [a, b], whenever
g(n+ 1)−g(n) is standard, d(xg(n), xg(n+1)) is infinitesimal and hence less than ε.
Of course, from xn one can easily define a and b, and so their midpoint (a+ b)/2,
which would ruin C3. To avoid this, we will need to fuzz xn up, so that the
earlier cases mentioned are the only ones that happen.

In order to accomplish all of this we will need to exercise some care in the
choice not only of a and b but also in the model in which they are embedded. It
is easiest to work with an ultrapower of the universe V . (For the model theory
about to be used, see standard references, such as [5, Sec. 4.3].) Where c is
(the size of) the continuum, take an ultrapower M using a c-regular ultrafilter.
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Then M is c+ saturated over V ([5, Cororllary 4.3.14]). In the following, we will
identify a set in V with its image in M . In particular, g refers both to a function
(from N to N) in V and to its image in M .

The point of the saturation is that the model realizes any type of size c. The
type of interest to us is in a triple a, b, and k of (symbols standing for) natural
numbers. Start by including the formulas b > a, b−a > 0, b−a > 1, . . . , as well as
2k ≤ a and b ≤ 2k+1. This much is easily seen to be consistent, by compactness.

Toward realizing the first option listed above, consider an axiom which says “g
takes on no values in (a, b)”; more formally,

φg = ∃n : g(n) ≤ a ∧ b ≤ g(n+ 1) ,

for some g : N→ N in V .
Of course, φg might not be consistent (with the rest of the type); consider for

example the identity function. For those g’s, we will go toward the second option
from above. For any g ∈ V , and standard natural number β (for “bound”), let
ψg,β be

∀k : (if g(k) or g(k + 1) is in the interval (a, b), then g(k + 1)− g(k) < β′′) .

Notice that there are only c-many formulas of the form φg and ψg,β . Let the type
Ty be a maximal consistent extension of the starting formulas by φg’s and ψg,β ’s.
By the c+-saturation of M , Ty is realized in M . We would like to show that, for
all increasing h ∈ V , either φh ∈ Ty or, for some β, ψh,β ∈ Ty.

If h takes on no values in (a, b), then φh is true, and hence consistent with Ty,
and so by maximality is in Ty. Else consider the non-empty set

Ih = {h(k + 1)− h(k) | h(k) or h(k + 1) is in (a, b) } .
If every member of Ih were standard, then, since Ih is definable in M , it has a
standard bound, say β. Immediately, ψh,β is true, and so is consistent with Ty,
and therefore is in Ty. The other possibility is that Ih contains a non-standard
element. There are several cases here.

The simplest case is that, for some k with h(k+1)−h(k) non-standard, a ≤ h(k)
and h(k + 1) ≤ b. In that case, a and b could be re-interpreted to be h(k) and
h(k + 1) respectively. That would still satisfy Ty, and make φh true, and again
we would be done by maximality. If that does not happen, then, whenever k
generates a non-standard element of Ih, either h(k) < a or h(k + 1) > b (so Ih
has size at most 2). We will show what to do when both of those possibilities
occur (for different k’s, of course). This will call for a two-step procedure. If only
one of those possibilities occurs, then only one of those steps need be done.

Toward this end, we have h(k) < a, and also a < h(k + 1) < b, else Ih would
be empty. The first sub-case is that h(k+ 1)− a is non-standard. Then, similarly
to the above, we could re-interpret b as h(k + 1) (and leave a fixed), and get φh
consistent with Ty. The other sub-case is that h(k + 1)− a is standard. Then
we could interpret a as h(k + 1) (and leave b fixed). Re-interpreting Ty with this
new choice of a, the new Ih has size 1. Now one considers the other choice of k,
with h(k) < b < h(k + 1), and argues similarly.

So we conclude that Ty is complete in this sense. Returning to the model
construction, we are going to work over a two-node Kripke model. To the bottom
node associate V , and the top M . Take the full model F over that structure.
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(For the definition of a full model, see [6].) Consider the sequence xn described
at the beginning of this work: xn is 0 outside of [a, b], increases starting at a by
2/(b− a) at each step up to a value of 1 at the midpoint, then decreases by the
same amount back to 0 at b. It would be no trouble to show C3 for this sequence
for g ∈ V . The problem is, the full model contains a lot more functions g than
just those from V . In particular, from xn, a and b are easily definable, which
would kill C3 holding. So we need to hide things better. This can be done by
working within a topological model (built over the full model), and then taking a
sub-model of it.

Working in F , let the space T consist of all sequences yn such that |xn− yn| <
1/n (starting the indexing from 1, obviously), except for n in the interval [a, b],
in which |xn − yn| < 2/(b − a). A basic open set is given by restricting each
component yn to an open interval. Let Gn be the generic. In passing, we mention
that, by standard arguments, any g : N → N in the topological model is in its
ground model, which in this case is the full model F . We need more than that:
we need a model in which any such g, at least at ⊥, is in V .

To this end, we build essentially L[G]. At >, this would be unambiguous. That
is, at > we have a topological model over M , which models IZFRef , the version
with Reflection. It was shown in [9] that such a theory can define its version of L
and show it to be a model of IZFRef . It is not immediately clear, though, that
this construction is consistent with what we need to do at ⊥. So we describe the
situation at ⊥, and bring > along for the ride, and show what we need to for
both.

The definition of Lα[G], inductively on α an ordinal of M , is straightforward,
and is the same as in classical set theory. For α ∈ V an ordinal, its image in the
full model, for which we temporarily use the notation αf (f for “full”), works as
follows: ⊥ 
 “x ∈ αf” iff for some β < α, ⊥ 
 “x = βf ; and > 
 “x ∈ αf” iff,
in M , identifying α with its image under the elementary embedding into M , for
some β < α, ⊥ 
 “x = βf . Since αf is in the full model, which is the ground
model for the topological model, it is also in the topological model. So within
the topological model, the set Lαf

[G] can be defined by induction. We do not
know whether the topological model can separate ordinals of the form αf from
any others, or even whether the full model can do so, so the final step is done in
V resp. M : at bottom, L[G] is defined in V to be the union over the ordinals α
of Lαf

[G], whereas at > that union is taken in M .
What remains to be shown? For one, IZF, which we postpone to the end. By

the presence of G, it should be clear that C3′ fails, for g(n) = 2n: even if the
generic differs from xn, it is only by an infinitesimal amount at each component.
All that remains is that C3 holds for G. At >, G is a Cauchy sequence, so that
is taken care of. We need check C3 for G only at ⊥.

At ⊥, we need concern ourselves with only standard ε. For any such ε > 1/n,
n standard, let N be n. For g ∈ V , the whole set-up all along the way is to make
C3 true for that g. So we will be done if we can show that any h is in V : if
⊥ 
 h : N→ N then, for some g ∈ V , ⊥ 
 h = g.

By hypothesis, ⊥ forces a standard value for h on each standard input. So
that is the obvious choice for g: let g be such that g(n) is the value forced by
⊥ for h(n). In our model, let X be {n | h(n) 6= g(n) }. This could have only
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non-standard elements. We will show that it is decidable: for any n, either
T |= n ∈ X or T |= n /∈ X. Then we will show that any decidable set is either
empty or has a standard member. That then suffices.

For decidability: any value for h(n) has to be forced by T , by standard
arguments, as follows. If not, let O be a maximal open set forcing a value for
h(n). Pick a point on the boundary of O. What value could a neighborhood of
it force? If there is no such neighborhood, then h is not total, so need not be
considered. If it forces a different value than O does, then, by connectedness,
consider the overlap: h(n) is then no longer single-valued. So whatever value
h(n) has is forced by T . Now compare that to g(n).

As for a non-empty decidable set X having standard members: If it has a
member at all, consider the definition φ of X over Lα[G]. With regard to the
parameters in φ, one can unpack them by their definitions, ultimately reducing
the parameters used to finitely many standard ordinals and G. We will in the
course of this argument consider alternate interpretations of a and b. Of course,
when doing so, there is no longer any reason to believe that C3 still holds, or that
C3′ does not. This is of no matter for showing our current goal. The construction
of T , and of L[G], still makes sense, for any choice of a < b. Now consider the
space T1 based on the pair a− 1, b− 1. Notice that T ∩ T1 is a non-empty open
subset of both T and T1. So it forces the same facts about X that T does, and
that T1 does. So the interpretation of X stays the same when we shift a and
b down by 1. Iterate this procedure until the lower number is some standard
value, say a, larger than all of the natural number parameters used in φ. Then
hold a fixed, and reduce the upper number by one. By similar arguments, again
X remains unchanged. Iterate until this upper number is standard, say b. Call
the space based on a and b U . In M , X is still interpreted the same way, so, in
M , U |= “X has a member.” By elementarity, the same holds in V . Any such
member there has to be standard: V |= k ∈ X. So X has a standard member.

Finally, we sketch briefly why IZF holds. For the axioms of Empty Set and
Infinity, ∅ is definable over L0[G], and ω over Lω[G]. Pair and Union hold easily.
Extensionality is valid because that is how equality is defined. ∈-Induction holds,
even though M is ill-founded, because ∈-Induction holds in M . Reflection holds
because it holds in V : If Vα is a Σn-elementary substructure of V , then the initial
segment of L[G] up to α is itself a Σn-elementary substructure of the whole thing.
From this, Separation follows easily. For Power Set, given x ∈ L[G], since the
whole construction took place in V , the ordinals at which new subsets of x appear
are bounded, and at the next level they can all be collected into one set. a
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