THE PICARD GROUP OF A GENERAL TORIC VARIETY OF DIMENSION THREE

T. J. FORD AND R. STIMETS

Abstract. Let Δ be a complete fan in \mathbb{R}^3 such that every three-dimensional cone in Δ is non-simplicial. In any non-empty open neighborhood of Δ there is a fan Δ' such that every Δ'-linear support function is linear and the Picard group of the associated toric variety is zero.

1. Introduction

Let k be a field. Let $N = \mathbb{Z}^r$ and denote by T_N the k-torus on N. A fan Δ is a finite set of strongly convex polyhedral cones in $N \otimes \mathbb{R} = \mathbb{R}^r$ such that for all σ, τ in Δ, every face of σ is in Δ and $\sigma \cap \tau$ is a face of both σ and τ. If each cone in Δ is rational, then associated to Δ is the toric variety over k denoted $X = T_N \operatorname{emb}(\Delta)$ [1], [6], [7]. To what extent do the combinatorial properties of the fan Δ determine the Picard group of X? This question was addressed in [3] and [5] where many partial solutions are given.

The relation $\sigma \leq \tau$ if σ is a face of τ defines a partial ordering on the set of cones in Δ. Denote by Δ_{poset} this partially ordered set. Two fans Δ, Σ are of the same combinatorial type if there is an isomorphism $\Delta_{\text{poset}} \cong \Sigma_{\text{poset}}$ of partially ordered sets.

For example, if Δ is a simplicial complete rational fan in \mathbb{R}^r, the Picard group of X is a free \mathbb{Z}-module of rank $v - r$ where v is the number of one-dimensional cones in Δ. It follows that for complete simplicial fans, the Picard group of X is determined by the combinatorial type of the fan. For the details, see [6, pp. 63–65] or [5, Theorem 3.2].

To see that the Picard group is not determined by the combinatorial type of the fan, consider another example. The reader is referred to [5, Example 4.6] or [6, pp. 25–26] for the details. If Δ is the fan over the faces of the cube with vertices at $(\pm 1, \pm 1, \pm 1)$ in \mathbb{R}^3 and X is the associated toric variety, then the Picard group of X is \mathbb{Z}. Let Δ' be the fan with cones spanned by the same sets of generators except that the vertex $(1, 1, 1)$ is replaced by $(2, 1, 1)$. If X' is the toric variety associated to Δ', then the Picard group of X' is zero. The fans Δ and Δ' are of the same combinatorial type but their Picard groups are not isomorphic. Note that the maximal cones of Δ are non-simplicial.

Let Δ be a complete rational fan in \mathbb{R}^3 whose maximal cones are non-simplicial. The main result of this article, Theorem 1, proves that there is a rational fan Δ' of the same combinatorial type as Δ which is “close to Δ” in a way made precise later such that if X' is the toric variety associated to Δ', then the Picard group of X' is zero.

Date: March 3, 2014.

2000 Mathematics Subject Classification. Primary 14M25; Secondary 14C22.

Key words and phrases. toric variety, Picard group.
zero. Corollary 1 shows that the fan Δ' can be taken as a general rational point of a real manifold parametrizing a large set of fans of the same combinatorial type as Δ. In particular, it follows that the variety X' is non-projective and Δ' is not the fan of cones over the faces of any integral convex polytope containing the origin in its interior. These results were conjectured in [5, §4].

The proof of Theorem 1 uses the fact that the non-maximal cones of Δ are simplicial. For this reason, the proof does not extend to dimensions greater than three. Nevertheless, it seems plausible that a generalization of Theorem 1 should be true in higher dimensions.

There is a topology on the set of cones in Δ where the open sets are the subfans of Δ. Denote by Δ_{top} this topological space. Notice that two fans Δ, Σ are of the same combinatorial type if and only if Δ_{top} is homeomorphic to Σ_{top}. The assignment $\Delta \mapsto \Delta_{top}$ defines a functor Σ from the category of fans on \mathbb{R}^r to the category of finite topological spaces.

Let $\Delta(i) = \{\sigma \in \Delta | \dim(\sigma) = i\}$. Set $\Delta(1) = \{r_0, \ldots, r_n\}$. The intersection of $\Delta(1)$ with the unit sphere S in \mathbb{R}^r is a finite set of points, say $\{p_0, \ldots, p_n\}$. About each p_i we can find an open ball B_i on S such that if p_i is parametrized by B_i, then each choice of $\vec{p} = (p_0, p_1, \ldots, p_n)$ in $B_0 \times B_1 \times \cdots \times B_n$ defines a fan $\Phi = \Phi(\vec{p})$ such that $\Phi_{top} \cong \Delta_{top}$. The manifold $B = \bigcap_{i=0}^n B_i$ parametrizes a subset of fans in the fiber $\Sigma^{-1}(\Delta_{top})$. Call B an open neighborhood of Δ. If $\vec{p} \in B$, then the fan $\Phi = \Phi(\vec{p})$ is not necessarily rational. Sometimes it will be necessary to refer to points in B that give rise to rational fans. In this case let

1. $B_{rat} = \{(p_0, \ldots, p_n) |$ for each i, p_i is the intersection of a rational 1-dimensional cone r_i with $B_i\}.$

If σ is a cone in $N \otimes \mathbb{R}$, define $SF(\sigma)$ to be $\text{Hom}_\mathbb{R}(\mathbb{R}^n, \mathbb{R})$. The group of Δ-linear support functions, denoted $SF(\Delta)$, is by definition the kernel of ∂^0 in the Čech complex

$$0 \rightarrow \bigoplus_i SF(\sigma_i) \rightarrow \bigoplus_{i<j} SF(\sigma_{ij})$$

where $\{\sigma_0, \ldots, \sigma_w\}$ is the set of maximal cones of Δ. Set

$$\kappa = \dim_\mathbb{R} SF(\Delta)$$

Let $M = \text{Hom}_\mathbb{Z}(N, \mathbb{Z})$. There is a natural map $M \otimes \mathbb{R} \rightarrow SF(\Delta)$. A support function in the image of $M \otimes \mathbb{R}$ is said to be linear.

2. The Main Result

Theorem 1. Let Δ be a complete fan on \mathbb{R}^3 such that every three-dimensional cone in Δ is non-simplicial. Let B be an open neighborhood of Δ. There is a fan Δ' in B such that every Δ'-linear support function is linear. The fan Δ' can be taken to be rational, and if so, the Picard group of the associated toric variety is zero.

Proof. The proof of Theorem 1 is split into a series of lemmas and occupies the remainder of this section. The statement about the Picard group follows from the first claim, by the next lemma.
Lemma 2. For a complete rational fan Δ on \mathbb{R}^r, if every Δ-linear support function is linear, then the Picard group of $X = T_N \text{emb}(\Delta)$ is zero.

Proof. If Δ is a fan of rational cones and $X = T_N \text{emb}(\Delta)$, then it follows from [2, Lemma 8] that there is an exact sequence
\begin{equation}
M \otimes \mathbb{R} \rightarrow \mathcal{S}\mathcal{F}(\Delta) \rightarrow \text{Pic} X \otimes \mathbb{R} \rightarrow 0.
\end{equation}
In this case, set
\begin{equation}
\rho = \dim_{\mathbb{R}} \text{Pic} X \otimes \mathbb{R}
\end{equation}
If we assume moreover that Δ is a complete fan, then X is compact and $M \otimes \mathbb{R} \rightarrow \mathcal{S}\mathcal{F}(\Delta)$ is an injection. The Picard group of X is a finitely generated torsion free abelian group of rank ρ. Combining the above, we have shown $\kappa = \rho + r$ and the lemma follows. \hfill \Box

Let Δ be a fan on \mathbb{R}^3 which has at least one three-dimensional cone. Let $\sigma \in \Delta(3)$ and suppose σ has n one-dimensional faces. Define a cubing of σ to be any subdivision of σ that inserts n new one-dimensional cones r_{n+1}, \ldots, r_{2n}, $2n$ new two-dimensional cones and $n + 1$ three-dimensional cones $\sigma_0, \sigma_1, \ldots, \sigma_n$. Write $\text{cube}(\sigma)$ for a fan which corresponds to a cubing of the cone σ. This is illustrated in Figure 1 for $n = 4$ and Figure 2 for a cone σ with n edges. There is a morphism of fans $\text{cube}(\sigma) \rightarrow \Delta(\sigma)$. If Σ is the subdivision of Δ corresponding to a cubing of σ, there is a morphism of fans $\Sigma \rightarrow \Delta$. The natural map $\mathcal{S}\mathcal{F}(\Delta) \rightarrow \mathcal{S}\mathcal{F}(\Sigma)$ is injective. It was shown in [5, Example 3.6] that for a general cubing of a simplicial three-dimensional cone σ, a linear support function on $\text{cube}(\sigma)$ is linear. The same result was shown in [5, Example 4.6] for the cone σ of Figure 1. The next lemma proves this for all n.

Lemma 3. Let σ be a three dimensional cone in \mathbb{R}^3 and suppose σ has n one-dimensional faces. For a general choice of r_{n+1}, \ldots, r_{2n} in a cubing of σ, the fan $\Xi = \text{cube}(\sigma)$ has the property that a Ξ-linear support function is linear.

Proof. A Ξ-linear support function h is determined by its values on the cones of dimension one. The group of Ξ-linear support functions can be embedded in $\bigoplus_{i=1}^{2n} \mathbb{R} \cdot r_i$ as the kernel of a linear transformation defined by a matrix with $2n$
rows and \(2n - 3\) columns. Call this matrix \(S\). The first \(n\) columns correspond to the cones \(\sigma_1, \ldots, \sigma_n\). The last \(n - 3\) columns correspond to the cone \(\sigma_0\). Each column has exactly four non-zero entries corresponding to the linear dependence relation among four vectors in \(\mathbb{R}^3\). Upon normalization, one of the four numbers in each column can be chosen to be 1. The matrix \(S\) looks like

\[
S = \begin{bmatrix}
 a_1 & 0 & 0 & b_4 & x_4 & x_5 & x_n \\
 b_1 & a_2 & 0 & 0 & y_4 & y_5 & y_n \\
 0 & b_2 & a_3 & 0 & z_4 & z_5 & \cdots & z_n \\
 0 & 0 & b_3 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\
 1 & 0 & 0 & \cdots & c_n & 0 & 0 & \cdots & 0 \\
 c_1 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & c_2 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & c_3 & 0 & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

In \(S\), rows 4 through \(n\) are independent. The lower left \(n \times n\) block of \(S\) has determinant \(1 + (-1)^{n-1}c_1c_2 \cdots c_n\) which is non-zero for a general cubing. Therefore, we see that \(S\) has row rank \(2n - 3\) and the kernel of \(S\), which is \(SF(\Xi)\), has dimension three.
Lemma 4. Let Δ be a fan on \mathbb{R}^3 and $\sigma \in \Delta(3)$. Let Σ be the subdivision of Δ corresponding to a cubing of σ. For a sufficiently general choice of r_{n+1}, \ldots, r_{2n} in the cubing, the natural map $\text{SF}(\Delta) \rightarrow \text{SF}(\Sigma)$ is an isomorphism.

Proof. As was shown in Lemma 3, any support function h on a general cube(σ) is linear. So given $h \in \text{SF}(\Sigma)$, h is linear on the subfan $\{0, r_1, \ldots, r_{2n}\}$. Thus, h comes from a Δ-linear support function. □

Without loss of generality, fix B and suppose Δ is a general member of B. Let $r_0 \in \Delta(1)$. Define

$$\text{Star}(r_0) = \{ \sigma \in \Delta | r_0 \text{ is a face of } \sigma \text{ or } \sigma \text{ is a face of } r_0 \}.$$

So Star(r_0) is a subfan of Δ.

Lemma 5. If $h \in \text{SF}(\Delta)$ is non-linear on Δ, then there exists $r_0 \in \Delta(1)$ such that h is non-linear on Star(r_0).

Proof. Pick an arbitrary $\sigma \in \Delta(3)$. Subtract a linear support function from h and assume without loss of generality that h is zero valued on σ. Since h is non-linear, there exists some three-dimensional cone in $\Delta(3)$ on which h is non-zero. Therefore, there are two three-dimensional cones σ_1 and σ_2 such that $\sigma_1 \cap \sigma_2$ has dimension at least one and h is zero on σ_1 and non-zero on σ_2. Let r_0 be a one-dimensional face of $\sigma_1 \cap \sigma_2$. □

Say Star(r_0) = $\{r_0, r_1, \ldots, r_m\}$, as shown in Figure 3. Check that r_0, r_1, \ldots, r_m are distinct. Let $\Sigma \rightarrow \Delta$ be a subdivision of Δ corresponding to cubing every σ in $\Delta(3) - \text{Star}(r_0)(3)$. By Lemma 4, we can pick Σ such that the natural map $\text{SF}(\Delta) \rightarrow \text{SF}(\Sigma)$ is an isomorphism.

Lemma 6. For every $h \in \text{SF}(\Sigma)$, the values of h on r_0, r_1, \ldots, r_m are determined by the values of h on $\Sigma(1) - \{r_0, r_1, \ldots, r_m\}$.

Proof. The subdivision construction employed in the definition of Σ guarantees that for each i in the range $1 \ldots m$, there is a three-dimensional cone $\sigma \in \Sigma(3)$, $\sigma \notin \text{Star}(r_0)$, such that r_i is an edge of σ and the other three edges of σ are in $\Sigma(1) - \{r_0, r_1, \ldots, r_m\}$. The value of h on r_i is completely determined by the values on the three edges of σ not in Star(r_0). □
Lemma 7. Every Σ-linear support function is linear on $\text{Star}(r_0)$.

Proof. Any Σ-linear support function is determined by the values along the one-dimensional cones of Σ. By this, there is an embedding

$$0 \to \text{SF}(\Sigma) \to \bigoplus_{r \in \Sigma(1)} \mathbb{R} \cdot r$$

(6)

Let h be a Σ-linear support function. The value of h along r_0 is determined by the values along those one-dimensional cones not in $\text{Star}(r_0)$. Therefore (6) yields an embedding

$$0 \to \text{SF}(\Sigma) \to \bigoplus_{r \in \Sigma(1)-\text{Star}(r_0)} \mathbb{R} \cdot r$$

(7)

View r_0 as a variable which parametrizes fans in an open neighborhood of Σ. For each such r_0, the group of support functions remains constant when viewed as a subspace of $\bigoplus_{r \in \Sigma(1)-\text{Star}(r_0)} \mathbb{R} \cdot r$. Say σ_1 and σ_2 are adjacent three-dimensional cones in $\text{Star}(r_0)$. Say σ_1 is spanned by $r_0, r_1, r_2, \ldots, r_u$ and σ_2 is spanned by $r_0, r_1, s_2, \ldots, s_v$. Fix $h \in \text{SF}(\Sigma)$. Subtract a linear support function, and assume h is zero valued on the cone σ_1. Because Δ is general, we can assume r_0 is general. Moving r_0 to a one-dimensional cone in the interior of σ_2 shows that h is zero valued on a three-dimensional subset of σ_2. Hence h is zero valued on r_1, s_2, \ldots, s_v. By iterating this argument, we see that h is zero valued on r_1, r_2, \ldots, r_m. This proves the lemma. \square

Since $\text{SF}(\Delta) \to \text{SF}(\Sigma)$ is an isomorphism, it follows from Lemma 7 that every Δ-linear support function is linear on $\text{Star}(r_0)$. Theorem 1 follows from Lemma 5. \square

3. Concluding Remarks

We conclude with some corollaries to Theorem 1.

Corollary 1. Let Δ and B be as in Theorem 1. There is a dense open $U \subseteq B$ such that for all fans Δ' in $U \cap B_{\text{rat}},$

1. the Picard group of $T_N \text{emb}(\Delta')$ is zero
2. $T_N \text{emb}(\Delta')$ is non-projective.
3. Δ' is not the fan of cones over the faces of any convex integral polytope containing the origin in its interior.

Proof. As was shown in [5, p. 4044], there is an open subset U of B from which Δ' may be chosen. In fact U is the complement of a Zariski closed. It follows from Theorem 1 that there is a dense open $U \subseteq B$ such that for all rational fans Δ' in U, the Picard group of $T_N \text{emb}(\Delta')$ is zero.

A projective normal variety X will always have a non-principal Cartier divisor corresponding to a hyperplane section. It follows that a projective toric variety has a non-zero Picard group. Therefore, for all rational fans Δ' in U, the toric variety $T_N \text{emb}(\Delta')$ is non-projective.

If Q is a convex integral polytope containing the origin in its interior, and Δ' the fan over the faces of Q, then $T_N \text{emb}(\Delta')$ is projective [7, Proposition 2.19]. \square
Remark 2. The proof of [3, Theorem 3.1] shows that for any complete fan of dimension three there exists a rational fan Σ of the same combinatorial type as Δ such that $X = T_N \text{emb}(\Sigma)$ is projective and thus $\text{Pic} \, X \neq 0$. Can Σ be chosen from within B?

Theorem 1 also gives information about the rank of the torsion free part of the cohomological Brauer group [2] for a general fan Δ' in B.

Corollary 3. Let Δ, B, U be as in Corollary 1. For all fans Δ' in $U \cap B_{\text{rat}}$,

$$\dim H^2(T_N \text{emb}(\Delta'), \mathbb{G}_m) \otimes \mathbb{Q} = 3 - (n + 1) + \sum_{i=0}^{w} q_i$$

where $\Delta(3) = \{v_0, \ldots, v_w\}$, $\Delta(1) = \{r_0, \ldots, r_n\}$ and $q_i + 3$ is the number of one-dimensional edges in v_i.

Proof. Follows from Corollary 1 and [5, Theorem 3.5].

Remark 4. It follows from Theorem 1 that Conjecture 4.15 of [4] is true.

References

DEPARTMENT OF MATHEMATICS, FLORIDA ATLANTIC UNIVERSITY, BOCA RATON, FLORIDA 33431
E-mail address: ford@fau.edu

DEPARTMENT OF MATHEMATICS, FLORIDA ATLANTIC UNIVERSITY, BOCA RATON, FLORIDA 33431.
CURRENT ADDRESS: COMMANDANT, ATSA-CDW, 5800 CARTER ROAD, FORT BLISS, TEXAS 79916
E-mail address: rstimets@netscape.net