Tree Decompositions of Cayley Graphs and Digraphs with Word-Degenerate Connection Sets

Mari F. Castle*, Evan Moore, Erik Westlund, Kennesaw State University

For a tree T, the graph G is T-decomposable if there exists a partition of the edge set of G into isomorphic copies of T. In 1963, Ringel conjectured that K_{2m+1} can be decomposed by any tree with m edges. In 1989, Häggkvist conjectured more generally that every $2m$-regular graph can be decomposed by any tree with m edges. Fink showed in 1994 that for any directed tree T, the directed Cayley graph $\text{Cay}(G; S)$ is T-decomposable if $|S| = |E(T)|$ and S is a minimal generating set of G. This talk presents an enlarged family of Cayley graphs and digraphs that are tree decomposable. In particular, if our connection set is “(k, t)-word degenerate,” and T is a directed tree with minimal spanning star forest F, then the directed Cayley graph $\text{Cay}(G; S)$ is T-decomposable whenever $|S| = |E(T)|$, $k \geq \text{diam}(T)$, and $t \leq |E(F)|$.

Keywords: Cayley graph, decomposition, tree.