On Decomposing Regular Graphs and Multigraphs into Isomorphic Trees

Saad El-Zanati, Illinois State University

Let H and G be graphs or multigraphs such that G is a subgraph of H. A G-decomposition of H is a set $\Delta = \{G_1, G_2, \ldots, G_t\}$ of pairwise edge-disjoint subgraphs of H each of which is isomorphic to G and such that each edge of H occurs in exactly one G_i. Graham and Häggkvist have conjectured that every tree with n edges decomposes every $2n$-regular graph. This conjecture has been confirmed for a small number of cases. If G is a tree with n edges and H is n-regular, then G may or may not decompose H. For a simple graph H, we let $2H$ denote the multigraph obtained by replacing each edge of H with two parallel edges. We have previously conjectured that if a G is a tree with n edges and H is an n-regular simple graph, then there exists a G-decomposition of $2H$. In this talk, we report on some recent results related to variations of these conjectures.

Keywords: tree decomposition, Graham-Häggkvist Conjecture, 2-fold graph