Edge-Disjoint Hamilton Cycles in Star Graphs of Prime Dimension

Parisa Derakhshan*, Walter Hussak, Loughborough University, UK

The star graphs S_{tn} are Cayley graphs over the symmetric group of permutations with a certain set of generating transpositions. Hamilton decomposition of these graphs have been studied by several authors. Hussak and Schröder found a Hamilton decomposition of S_{t5}, and Čada et al. showed that S_{tn} contains $\lfloor n/8 \rfloor$ pairwise edge-disjoint Hamilton cycles where n is prime. The prime integer n is called a safe prime if $n = 2z + 1$ where z is also prime. In this paper, by defining automorphisms and based on the automorphic images of a known Hamilton cycle in S_{tn}, we improved this bound to $\lfloor n/4 \rfloor$ where n is a safe prime.

Keywords: Hamilton cycle, star graph, Hamilton decomposition.