An Algorithm for graceful labelings of certain unicyclic graphs and some new graceful C_{2n+1}-unicyclic graphs

Pambe Biatch’ Max*, Laure Pauline Fotso, UNIVERSITY OF YAOUNDE I, Jay Bagga, BALL STATE UNIVERSITY

A graceful labeling of a simple graph G is an injection f from the vertices of G to the set $\{0,1,2,\cdots,|E(G)|\}$, such that when each edge xy is assigned the label $|f(x) - f(y)|$, the resulting edge set is $\{1,2,\cdots,|E(G)|\}$, with no label repeated. We pay attention to Truszczynski’s conjecture, that all unicyclic graphs except cycles C_n with $n \equiv 1(mod\ 4)$ or $n \equiv 2(mod\ 4)$, are graceful. Jay Bagga et al. introduced an algorithm to enumerate graceful labelings of cycles and ”sun graphs”. We generalize their algorithm to enumerate all graceful labelings of a class of irregular unicyclic graphs and provide some experimental results. We also present some new graceful unicyclic graphs, $C_{2n+1} \oplus (R(u); R'(v); P_{k_1}; P_{k_2}; \cdots; P_{k_{2n-1}})$, where $k_i \in \{1,2\}$, P_n is a path of length n, each path P_i sharing one peripheral vertex with C_{2n+1}, R and R' are caterpillars sharing respectively vertices u and v, peripheral vertices or vertices neighbors of peripheral vertices, with C_{2n+1}, u and v being neighbors in the cycle. We show at the end how our work contributes to the proof of the conjecture of Truszczynski.

Keywords: Unicyclic graph, Graceful labeling, Superimposing graphs