4-Chromatic Subgraphs of \mathbb{Q}^4

Matt Noble, Francis Marion University

A bit of notation – for $X \subset \mathbb{R}^n$ and $d > 0$, let $G(X, d)$ denote the distance graph with vertex set X where any two vertices are adjacent if and only if they are a Euclidean distance d apart. Chromatic numbers and related properties of $G(\mathbb{Q}^n, d)$ have been studied with varying degrees of success since the 1970s. In a recent paper, Peter D. Johnson showed that four colors are sufficient to properly color $G(\mathbb{Q}^4, d)$ for any $d > 0$. In this talk we will use a few results from classical number theory to show that four colors are also necessary to properly color any non-trivial graph $G(\mathbb{Q}^4, d)$. We then close with a few open problems related to the subject.

Keywords: Euclidean distance graph, chromatic numbers, coloring the rationals