Edge colorings of graphs avoiding a given monochromatic bipartite subgraph

Hanno Lefmann, Fakultät für Informatik, TU Chemnitz, Straße der Nationen 62, D-09111 Chemnitz

Let F be a fixed graph and k be a positive integer. For a host graph H, we investigate the quantity $c_{k,F}(H)$, which counts the number of colorings of the edge set of H with k colors such that no monochromatic copy of F arises. Let $c_{k,F}: \mathbb{N} \to \mathbb{N}$ be a function defined by $c_{k,F}(n) = \max\{c_{k,F}(H): |V(H)| = n\}$, i.e., $c_{k,F}(n)$ is equal to the maximum of $c_{k,F}(H)$ over all host graphs H on n vertices. In this talk we study the asymptotic behavior of $c_{k,F}(n)$ and determine the (unique) extremal graphs for some bipartite graphs F, in particular if F is a matching, a path or a star. It turns out that the growth of $c_{k,F}(n)$ is related to the Turán number of the forbidden monochromatic subgraph F. This is joint work with Carlos Hoppen and Yoshiharu Kohayakawa.

Keywords: edge colorings, Turán number