Grundy Numbers of Strong Products of Graphs

Arnfried Kemnitz*, Jens-P. Bode, Christoph Hillert,
Techn. Univ. Braunschweig, Germany

A proper k-coloring c of a graph G is called Grundy k-coloring if for each vertex u and all colors i with $1 \leq i < c(u)$ there exists an adjacent vertex v with $c(v) = i$. The maximum number k of colors for which a Grundy k-coloring using all k colors exists is the Grundy number $\Gamma(G)$ of G.

The strong product of graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ has as vertex set the Cartesian product $V_G \times V_H$ of the vertex sets of G and H. Two vertices (u, v) and (\bar{u}, \bar{v}) of $V_G \times V_H$ are adjacent if and only if $u = \bar{u}$ and $v\bar{v} \in E_H$ or $v = \bar{v}$ and $u\bar{u} \in E_G$ or $u\bar{u} \in E_G$ and $v\bar{v} \in E_H$.

We completely determine the Grundy numbers of strong products of paths and cycles.

Keywords: Grundy coloring, strong product of graphs